УДК 532.5+519.63 DOI: 10.15372/PMTF202215142

ВЛИЯНИЕ НЕРОВНОСТИ ДНА НА ХАРАКТЕРИСТИКИ ВЗАИМОДЕЙСТВИЯ УЕДИНЕННОЙ ВОЛНЫ С ПОЛУПОГРУЖЕННЫМ ТЕЛОМ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ

О. И. Гусев*, В. С. Скиба*,**, Г. С. Хакимзянов*, Л. Б. Чубаров*

- * Федеральный исследовательский центр информационных и вычислительных технологий, Новосибирск, Россия
- ** Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия

E-mails: gusev_oleg_igor@mail.ru, vassiliyskiba@gmail.com, khak@ict.nsc.ru, chubarovster@gmail.com

Рассматривается задача о взаимодействии уединенной волны с частично погруженным над неровным дном неподвижным телом. Для решения этой задачи используются нелинейно-дисперсионная модель мелкой воды (Серре — Грина — Нагди) и модель потенциальных течений. Численно исследуется влияние горизонтальных и вертикальных размеров неровностей дна и их расположения относительно полупогруженного тела на значения суммарной силы, воздействующей на препятствие. Показано, что горизонтальная составляющая этой силы монотонно увеличивается при увеличении вертикального размера и длины подводного препятствия. Этот эффект усиливается и при приближении к телу, а на вертикальную составляющую силы наличие препятствия оказывает слабое влияние, при этом ее зависимость от размера препятствия может быть немонотонной.

Ключевые слова: уединенная волна, неровное дно, полупогруженное тело, нелинейнодисперсионные уравнения, условия сопряжения, силовое воздействие, результаты расчетов

Введение. На Всероссийской конференции "Нелинейные волны — 2022", посвященной памяти члена-корреспондента РАН В. М. Тешукова, были представлены результаты [1] численного моделирования взаимодействия длинных волн с береговой линией и прибрежными конструкциями. Гидротехнические сооружения ответственного назначения в виде полупогруженных в воду и неподвижно заякоренных на прибрежных участках акваторий тел требуют достаточно точной оценки возможного волнового воздействия, что обусловливает актуальность настоящей работы. К такого рода сооружениям относятся плавучие атомные электростанции, хранилища сжиженного газа, регазификационные установки и др. Одним из источников опасного воздействия являются длинные поверхностные волны (цунами), неоднократно наблюдавшиеся на тихоокеанском и черноморском побережьях России. Большинство таких волн имеют сейсмическое происхождение, реже — оползневую, обвальную, метеорологическую природу, могут порождаться извержением вулканов и крайне редко падением крупных космических объектов.

Работа выполнена при финансовой поддержке Российского научного фонда (код проекта 21-71-00127).

[©] Гусев О. И., Скиба В. С., Хакимзянов Г. С., Чубаров Л. Б., 2023

Разнообразие механизмов генерации цунами приводит к разнообразию форм и характеристик волн, воздействующих на плавучие гидротехнические объекты. Более того, механизмы одного и того же типа могут породить волны различных форм [2]. Однако часто, особенно в случае удаленных цунами, время распространения которых в океане приводит к частотной дисперсии, головные фрагменты мареограмм, записанных на значительном удалении от источника, становятся подобными мареограммам уединенной или одиночной волны. Мареограммы, записанные вблизи очагов цунамигенерирующих землетрясений, могут быть близки по форме к мареограммам так называемых N-волн. Это позволяет использовать волны указанных форм для определения базовых характеристик волнового воздействия на модельные конструкции [3]. В настоящей работе представлены результаты, полученные для модельного цунами в виде уединенной волны, распространяющейся над неровным дном.

Влияние неровностей дна на трансформацию поверхностных волн изучается в течение длительного времени (см., например, [2, 4–9]). Выполнены исследования взаимодействия поверхностных волн с разного рода прибрежными сооружениями и разработаны методики оценки волновых нагрузок на конструкции при воздействии на них штормовых волн [10]. В последнее десятилетие с помощью аналитических, лабораторных и численных методов активно исследуется воздействие длинных волн типа цунами на большие полупогруженные конструкции (см., например, [3, 11, 12]). Результаты этих исследований показывают, что длина тела и его осадка (заглубление) оказывают существенное влияние на волновую картину перед телом и за ним, на отраженные от тела и прошедшие за него волны, на максимальные значения вертикальных заплесков на лицевую (обращенную к набегающей волне) и тыльную грани тела, на максимальные значения горизонтальных и вертикальных составляющих силы воздействия длинных волн на тело. При этом во всех случаях дно полагалось горизонтальным и влиянием неровностей дна пренебрегалось.

Представляет интерес исследование влияния неровностей дна на характеристики взаимодействия поверхностных волн с большими полупогруженными телами. Однако работ в этом направлении немного, а изложенные в них результаты недостаточно полные. Так, в [13] изучается воздействие регулярных волн на тело прямоугольной формы, расположенное над плоским откосом с углом заложения 3 : 100, и указывается, что волновые нагрузки на тело в этом случае отличаются от нагрузок в случае горизонтального дна. В [14] показано, что максимальные значения заплесков уединенной волны на лицевую грань тела монотонно увеличиваются при увеличении угла наклона плоского откоса, а на тыльной уменьшаются, при этом угол откоса менялся от 0,1 до $1,4^{\circ}$, что соответствовало реальным условиям в области установки конструкции. В работе [15] исследовалось воздействие волн, созданных с помощью вакуумного волнопродуктора, на тело прямоугольной формы, расположенное над плоским откосом с углом заложения 1 : 50, и показано, что в рассмотренных диапазонах определяющих параметров значения максимальных заплесков на лицевую грань тела почти линейно увеличиваются с ростом амплитуды набегающей волны, заглубления тела и его длины. В работе [16] рассматривалось взаимодействие периодических волн, распространяющихся над горизонтальным дном, с большой неподвижной полупогруженной конструкцией, под которой дно имело неровность в виде полусферического возвышения. Результаты сравнения со случаем горизонтального дна показывают, что такая неровность дна незначительно изменяет максимальный заплеск на лицевую грань тела, однако ведет к росту давления на его днище.

Целью настоящей работы является определение зависимости силовых характеристик волнового воздействия от геометрических характеристик препятствия, расположенного перед объектом, его высоты и длины. Такая задача позволяет моделировать реальные ситуации, когда на пути волны от ее источника к объекту воздействия может оказаться

Рис. 1. Схема области течения в задаче о взаимодействии уединенной волны, распространяющейся над неровным дном, с полупогруженным неподвижным телом прямоугольной формы

либо подводное волнозащитное сооружение, либо фрагмент судоходного канала, либо зона отвала грунта, извлеченного при строительстве этого канала. Основные результаты получены с помощью полностью нелинейной дисперсионной модели Серре — Грина — Нагди (Serre — Green — Naghdi (SGN)) второго длинноволнового приближения [17]. Для оценки влияния дисперсии волн на процесс их взаимодействия с полупогруженным телом проведено сравнение с результатами, полученными в рамках бездисперсионной NSWE-модели (nonlinear shallow water equations) первого длинноволнового приближения. Также проводится сравнение с результатами расчетов в рамках полностью нелинейной Pot-модели потенциальных течений жидкости.

1. Постановка задачи. Рассмотрим течение жидкости со свободной поверхностью в бассейне с непроницаемыми вертикальными стенками и расположенным в нем полупогруженным неподвижным телом прямоугольной формы с горизонтальным днищем. Будем полагать, что поверхностные волны распространяются по нормали к плоским боковым (лицевой и тыльной) вертикальным граням тела и параметры течения не зависят от одной из горизонтальных координат. Декартову систему координат Oxy с вертикальной осью Oy выберем таким образом, чтобы уравнение свободной поверхности покоящейся жидкости имело вид y = 0, а функция y = -h(x) задавала рельеф дна (рис. 1). В этой системе координат левая и правая границы бассейна имеют координаты x = 0 и x = l соответственно, лицевая и тыльная грани тела — $x = x_l$ и $x = x_r$ ($0 < x_l < x_r < l$), днище тела — $y = d_0$ ($d_0 < 0, -h(x) < d_0$ при $x \in [x_l, x_r]$).

Взаимодействие длинных поверхностных волн с полупогруженными телами исследовалось в рамках математических моделей для течений несжимаемой невязкой жидкости с плотностью ρ (далее $\rho = 1$). При использовании моделей мелкой воды область течения D = (0, l) разбивалась на внешнюю часть $D^e = (0, x_l) \cup (x_r, l)$, где имеет место течение жидкости со свободной границей, и внутреннюю подобласть $D^i = (x_l, x_r)$ с течением несжимаемой жидкости в пространстве между днищем полупогруженного тела и дном акватории. Для склеивания решений в этих подобластях использовались условия сопряжения на их общих границах.

1.1. Уравнения во внешней области D^e . В области D^e течение моделируется с использованием нелинейно-дисперсионной SGN-модели [17]:

$$H_t + (Hu)_x = 0,$$
 $(Hu)_t + (Hu^2 + p)_x = \check{p}h_x,$ $x \in D^e,$ (1)

где t — время; u(x,t) — осредненная по глубине горизонтальная скорость потока; $H(x,t) = \eta(x,t) + h(x)$ — полная глубина; $\eta(x,t)$ — отклонение свободной поверхности от невозмущенного уровня; p — проинтегрированная по толщине слоя жидкости главная часть давления, удерживаемая в длинноволновом приближении; \check{p} — давление на дне:

$$p = gH^2/2 - \varphi, \qquad \check{p} = gH - \psi, \tag{2}$$

g — ускорение свободного падения; $\varphi,\,\psi$ — дисперсионные составляющие p и \check{p} соответственно:

$$\varphi = \frac{H^3}{3}R_1 + \frac{H^2}{2}R_2, \qquad \psi = \frac{H^2}{2}R_1 + HR_2; \tag{3}$$

$$R_1 = u_{xt} + uu_{xx} - u_x^2, \qquad R_2 = (u_t + uu_x)h_x + u^2h_{xx}.$$
(4)

Искомыми величинами в уравнениях (1) являются полная глубина H, скорость u и дисперсионная составляющая давления φ , которая находится как решение линейного относительно φ обыкновенного дифференциального уравнения второго порядка

$$(k\varphi_x)_x - k_0\varphi = F,\tag{5}$$

где

$$k = \frac{4}{Hr}, \qquad k_0 = 6\left(\frac{2}{H^3}\frac{r-3}{r} + \left(\frac{h_x}{H^2r}\right)_x\right),$$

$$F = \left(g\eta_x + \frac{Rh_x}{r}\right)_x - \frac{6R}{Hr} + 2u_x^2, \quad R = -g\eta_x h_x + u^2 h_{xx}, \quad r = 4 + h_x^2.$$
(6)

Дисперсионная составляющая давления на дне ψ выражается через искомые величины H, u, φ по формуле [17]

$$\psi = \frac{1}{r} \left(\frac{6\varphi}{H} + HR + \varphi_x h_x \right). \tag{7}$$

Для системы уравнений (1), (5) задаются краевые условия

$$u\big|_{x\in\Gamma_0} = 0, \quad \left(k\varphi_x - 6\frac{h_x}{H^2r}\varphi\right)\Big|_{x\in\Gamma_0} = 0, \quad \eta_x\big|_{x\in\Gamma_0} = 0; \tag{8}$$

$$\eta_x \big|_{x \in \Gamma} = 0, \tag{9}$$

а также условия сопряжения в точках $x \in \Gamma$ и начальные условия в D. В формуле (8) через $\Gamma_0 = \{0; l\}$ обозначена граница бассейна, $\Gamma = \{x_l; x_r\}$ — общая граница областей D^e и D^i .

1.2. Уравнения во внутренней области Dⁱ. Во внутренней области решается система уравнений для нестационарных внутриканальных течений идеальной несжимаемой жид-кости [18]. В случае рассматриваемой одномерной задачи с неподвижными дном и горизонтальным днищем тела эта система принимает вид

$$Q_x = 0, \qquad u_t^i + u^i u_x^i + \frac{p_x^i}{S} = \frac{\check{p}^i}{S} h_x, \quad x \in D^i,$$
 (10)

где $Q = S(x)u^{i}(x,t)$ — расход жидкости; $S(x) = h(x) + d_{0}$ — толщина слоя жидкости под телом; $u^{i}(x,t)$ — осредненная по этой толщине горизонтальная компонента скорости течения; $p^{i}(x,t)$ — проинтегрированное по толщине слоя давление; $p^{i}(x,t)$ — давление на дне, которое выражается через p^{i} [18]:

$$\check{p}^{i} = \frac{p^{i}}{S} + g \, \frac{S}{2} - \left(\frac{S^{2}}{6} \, R_{1}^{i} + \frac{S}{2} \, R_{2}^{i}\right),$$

величины R_1^i, R_2^i вычисляются по формулам (4), в которых вместо u следует использовать скорость u^i во внутренней области.

Из первого уравнения (10) следует независимость расхода от координаты x, что естественно для течения несжимаемой жидкости в канале переменного сечения. Таким образом, расход жидкости под телом зависит только от времени t, тогда $u^i(x,t) = Q(t)/S(x)$. Поэтому

$$R_{1}^{i} = -\frac{1}{S^{2}} \Big[\dot{Q}S_{x} + Q^{2} \Big(\frac{S_{x}}{S} \Big)_{x} \Big], \qquad R_{2}^{i} = -SR_{1}^{i}.$$
(11)

Следовательно, уравнение движения в (10) при каждом $x \in D^i$ принимает форму обыкновенного дифференциального уравнения

$$E\dot{Q} + \left(\frac{E}{2S}\right)\Big|_{x}Q^{2} + \left(\frac{p^{i}}{S}\right)\Big|_{x} = \frac{g}{2}h_{x},$$
(12)

где $E = (1 + h_x^2/3)/S.$

Таким образом, под телом необходимо определять давление $p^i(x,t)$ и расход Q(t). Давление можно исключить из вычислений, если уравнение (12) проинтегрировать по области D^i . В результате получаем уравнение Риккати

$$I_1 \dot{Q} + I_2 Q^2 + \left(\frac{p^i}{S}\right)\Big|_{x_r = 0} - \left(\frac{p^i}{S}\right)\Big|_{x_l = 0} = I_3$$
(13)

с постоянными коэффициентами *I*₁, *I*₂, *I*₃:

$$I_{1} = \int_{x_{l}}^{x_{l}} E(x) \, dx, \quad I_{2} = \left(\frac{E}{2S}\right)\Big|_{x_{r}} - \left(\frac{E}{2S}\right)\Big|_{x_{l}}, \quad I_{3} = \frac{g}{2} \left(h(x_{r}) - h(x_{l})\right),$$

где $p^i|_{x_l+0}$, $p^i|_{x_r-0}$ — предельные со стороны внутренней области D^i значения давления p^i в точках x_l и x_r соответственно. Из уравнения (13) следует, что изменение расхода жидкости под телом обусловлено разностью значений давления на границе Γ внутренней области D^i . Эти граничные значения давления p^i определяются с помощью условий сопряжения, связывающих течения жидкости во внешней и внутренней областях.

1.3. Условия сопряжения. В рассматриваемой одномерной задаче условие для массового расхода имеет вид [18]

$$(Hu)\big|_{x_l=0} = Q = (Hu)\big|_{x_r=0}$$
(14)

и показывает, что расход жидкости, втекающей под тело, равен расходу жидкости, вытекающей из-под него, и расходу Q(t). В формуле (14) и далее обозначения $(\cdot)|_{x_l=0}, (\cdot)|_{x_r+0}$ используются для предельных со стороны внешней области D^e значений зависимых переменных в точках x_l и x_r соответственно.

В условиях сопряжения на границе Г, кроме (14), задаются связи для давления [18] вне тела и под ним, которые в одномерном случае можно представить в виде

$$p^{i}|_{x_{l}+0} = \left[S\left(H - \frac{S}{2}\right)(g - R_{2}) - R_{1}S\left(\frac{H^{2}}{2} - \frac{S^{2}}{6}\right)\right]\Big|_{x_{l}-0},$$

$$p^{i}|_{x_{r}-0} = \left[S\left(H - \frac{S}{2}\right)(g - R_{2}) - R_{1}S\left(\frac{H^{2}}{2} - \frac{S^{2}}{6}\right)\right]\Big|_{x_{r}+0}.$$
(15)

1.4. NSWE-*модель*. Бездисперсионные NSWE-уравнения мелкой воды имеют вид (1), если в формулах (2) положить $\varphi \equiv 0$ и $\psi \equiv 0$. Во внутренней области D^i форма уравнений (12), (13) сохраняется, однако в случае NSWE-модели E(x) = 1/S(x). Условие сопряжения (14) остается таким же, как для SGN-модели, а соотношения (15) упрощаются:

$$p^{i}|_{x_{l}+0} = g\left[S\left(H - \frac{S}{2}\right)\right]|_{x_{l}-0}, \qquad p^{i}|_{x_{r}-0} = g\left[S\left(H - \frac{S}{2}\right)\right]|_{x_{r}+0}$$

2. Метод решения. Для численного решения задачи в рамках моделей мелкой воды используется схема предиктор-корректор [17], модифицированная в [19] с учетом необходимости численной реализации условий сопряжения на общей границе внешней и внутренней областей. Валидация этих моделей, а также интерпретация полученных результатов выполняются с использованием "эталонной" Pot-модели потенциальных течений идеальной

(.)

жидкости со свободной границей [3, 19]. Основные характеристики численного алгоритма для Pot-модели приведены в работе [20].

3. Расчет силовых характеристик. Значения горизонтальной составляющей $F_1(t)$ гидродинамической силы воздействия волн на тело прямоугольной формы определяются интегрированием давления вдоль его вертикальных лицевой и тыльной граней:

$$F_1(t) = \int_{d_0}^{\eta(x_l,t)} P(x_l, y, t) \, dy - \int_{d_0}^{\eta(x_r,t)} P(x_r, y, t) \, dy.$$
(16)

Для SGN-модели используется формула для "реконструированного" давления [17]

$$P(x, y, t) = [H(x, t) - (y + h(x))][g - R_2(x, t)] - \left(\frac{H^2(x, t)}{2} - \frac{(y + h(x))^2}{2}\right)R_1(x, t),$$

поэтому

$$F_1(t) = \left[\frac{(H-S)^2}{2}\left(g-R_2\right) - R_1\left(\frac{H^3}{3} - \frac{H^2S}{2} + \frac{S^3}{6}\right)\right]\Big|_{x_r+0}^{x_l-0}.$$
(17)

Величины R_1 и R_2 на границе Г получаются обращением равенств (3) с последующим использованием выражения (7) и граничного условия (9):

$$R_{1}\big|_{\Gamma} = \frac{12\varphi - 6\psi H}{H^{3}}\Big|_{\Gamma} = \left[\frac{3\varphi}{H^{3}} - \frac{3h_{x}}{2H}\left(k\varphi_{x} - 6\frac{h_{x}}{H^{2}r}\varphi\right) - 6\frac{u^{2}h_{xx}}{Hr}\right]\Big|_{\Gamma},$$

$$R_{2}\big|_{\Gamma} = \frac{-6\varphi + 4\psi H}{H^{2}}\Big|_{\Gamma} = \left[h_{x}\left(k\varphi_{x} - 6\frac{h_{x}}{H^{2}r}\varphi\right) + 4\frac{u^{2}h_{xx}}{r}\right]\Big|_{\Gamma}.$$
(18)

Производную φ_x можно исключить из этих выражений. Действительно, из уравнения движения (1), учитывая формулы (7), (6), получаем равенство

$$\frac{(Hu)_t + (Hu^2)_x}{H} = k\varphi_x - 6 \frac{h_x}{H^2 r}\varphi - g\eta_x - \frac{Rh_x}{r}.$$
(19)

Полагая, что равенство (19) выполняется во всей области вплоть до границы Γ , учитывая условие сопряжения (14) и его следствия

$$(Hu)_t\big|_{x_l=0} = \dot{Q} = (Hu)_t\big|_{x_r=0}$$

а также граничное условие (9), можно записать (19) в виде

$$\frac{\dot{Q} + (Hu^2)_x}{H}\Big|_{\Gamma} = \left(k\varphi_x - 6\frac{h_x}{H^2r}\varphi - \frac{u^2h_{xx}}{r}h_x\right)\Big|_{\Gamma}.$$
(20)

Используя условие (9) и его следствие $H_x|_{\Gamma} = h_x|_{\Gamma}$, получаем выражения (18) в окончательном виде

$$R_1\Big|_{\Gamma} = \left[\frac{3\varphi}{H^3} - \frac{3}{2H}\left(\frac{\dot{Q}}{H}h_x + \frac{(Hu^2h_x)_x}{H}\right)\right]\Big|_{\Gamma}, \quad R_2\Big|_{\Gamma} = \left(\frac{\dot{Q}}{H}h_x + \frac{(Hu^2h_x)_x}{H}\right)\Big|_{\Gamma}.$$
 (21)

Тогда формула (17) принимает вид

$$F_1(t) = \left[\frac{(H-S)^2}{2} \left(g - \frac{2H+S}{H^3}\varphi + [\dot{Q}h_x + (Hu^2h_x)_x]\frac{S}{2H^2}\right)\right]\Big|_{x_r+0}^{x_l-0}.$$

В случае NSWE-модели формула (17) упрощается следующим образом:

$$F_1(t) = g(\eta(x_l, t) - \eta(x_r, t)) \left(\frac{\eta(x_l, t) + \eta(x_r, t)}{2} - d_0\right).$$

В случае Рот-модели также используется формула (16), но с заменой давления *P* на давление в модели потенциальных течений, для вычисления которого применяется интеграл Коши — Лагранжа

$$P_{\text{Pot}}(x, y, t) = -\left(\Phi_t(x, y, t) + \frac{1}{2}\left(\Phi_x^2(x, y, t) + \Phi_y^2(x, y, t)\right) + gy\right),\tag{22}$$

где $\Phi(x, y, t)$ — потенциал вектора скорости.

Вертикальная составляющая силы воздействия волн вычисляется путем интегрирования давления по поверхности днища тела. В расчетах с использованием модели потенциальных течений давление как на вертикальных гранях тела, так и на горизонтальных определяется по формуле (22), поэтому имеем

$$F_2(t) = \int_{x_l}^{x_r} P_{\text{Pot}}(x, d_0, t) \, dx + g d_0 L,$$

где F_2 — вертикальная компонента гидродинамической силы воздействия волн на тело, полученная путем вычитания силы Архимеда $gL |d_0|$, выталкивающей тело из покоящейся жидкости, из полной вертикальной компоненты.

В случае SGN-модели интегрируется давление \hat{p}^i на днище:

$$F_2(t) = \int_{x_l}^{x_l} \hat{p}^i(x,t) \, dx + g d_0 L.$$
(23)

При этом во внутренней области давление \hat{p}^i на днище тела определяется по формуле [18]

$$\hat{p}^{i} = \frac{p^{i}}{S} - g\frac{S}{2} + \frac{S^{2}}{3}R_{1}^{i} + \frac{S}{2}R_{2}^{i}.$$
(24)

Величины R_1^i , R_2^i вычисляются по формулам (11), с учетом которых выражение (24) для давления на днище тела записывается следующим образом:

$$\hat{p}^{i} = \frac{p^{i}}{S} - g \, \frac{S}{2} + \frac{\dot{Q}}{6} \, S_{x} + \frac{Q^{2}}{6} \Big(\frac{S_{x}}{S}\Big)_{x}.$$

Поэтому формула (23) для вертикальной компоненты гидродинамической силы воздействия волн на тело принимает вид

$$F_2(t) = \int_{x_l}^{x_r} \left(\frac{p^i}{S} - g\frac{S}{2}\right) dx + \frac{\dot{Q}}{6} S\Big|_{x_l}^{x_r} + \frac{Q^2}{6} \frac{S_x}{S}\Big|_{x_l}^{x_r} + gd_0L.$$

Таким образом, для вычисления вертикальной компоненты силы необходимо знать давление p^i во внутренней области. Для его определения дважды проинтегрируем уравнение (12):

$$\begin{split} \dot{Q} \int_{x_{l}}^{x} E(x) \, dx + Q^{2} \Big(\frac{E}{2S} \Big|_{x} - \frac{E}{2S} \Big|_{x_{l}+0} \Big) + \frac{p^{i}}{S} \Big|_{x} - \frac{p^{i}}{S} \Big|_{x_{l}+0} = \\ &= g \Big(h(x) - \frac{S(x)}{2} \Big) - g \Big(h(x_{l}) - \frac{S(x_{l})}{2} \Big), \\ \dot{Q} \int_{x}^{x_{r}} E(x) \, dx + Q^{2} \Big(\frac{E}{2S} \Big|_{x_{r}-0} - \frac{E}{2S} \Big|_{x} \Big) + \frac{p^{i}}{S} \Big|_{x_{r}-0} - \frac{p^{i}}{S} \Big|_{x} = \\ &= g \Big(h(x_{r}) - \frac{S(x_{r})}{2} \Big) - g \Big(h(x) - \frac{S(x)}{2} \Big). \end{split}$$

Вычитая из первого равенства второе, получаем формулу

$$\frac{p^{i}(x)}{S(x)} = -\frac{\dot{Q}}{2} \Big(\int_{x_{l}}^{x} E(x) \, dx - \int_{x}^{x_{r}} E(x) \, dx \Big) - \Big(\frac{E(x)}{2S(x)} - \overline{\left(\frac{E}{2S}\right)} \Big) Q^{2} + \frac{\overline{\left(\frac{p^{i}}{S}\right)}}{F(x)} + g\Big(h(x) - \frac{S(x)}{2}\Big) - g\Big(\bar{h} - \frac{\bar{S}}{2}\Big), \tag{25}$$

где $x \in [x_l, x_r]$; черта означает средние значения величин на гранях тела,

$$\left(\frac{p^i}{S}\right) = \frac{1}{2} \left(\frac{p^i}{S}\Big|_{x_l+0} + \frac{p^i}{S}\Big|_{x_r-0}\right).$$

При этом согласно условиям сопряжения (15) и соотношениям (20), (21) имеют место равенства

$$\frac{p^{i}}{S}\Big|_{x_{l}+0} = \left(-\frac{3H^{2}-S^{2}}{2H^{3}}\varphi + g\left(H-\frac{S}{2}\right) - h_{x}\frac{(H-S)^{2}}{4H}\phi - R\frac{(H-S)^{2}}{4H}\right)\Big|_{x_{l}-0},$$

$$\frac{p^{i}}{S}\Big|_{x_{r}-0} = \left(-\frac{3H^{2}-S^{2}}{2H^{3}}\varphi + g\left(H-\frac{S}{2}\right) - h_{x}\frac{(H-S)^{2}}{4H}\phi - R\frac{(H-S)^{2}}{4H}\right)\Big|_{x_{r}+0},$$

где

$$\phi\big|_{x_l=0} = \left(\frac{\dot{Q}}{H} + h_x \frac{u^2}{H} + (u^2)_x\right)\Big|_{x_l=0}, \qquad \phi\big|_{x_r=0} = \left(\frac{\dot{Q}}{H} + h_x \frac{u^2}{H} + (u^2)_x\right)\Big|_{x_r=0}$$

В рассматриваемом частном случае горизонтального днища выражение (25), справедливое для произвольных форм дна водоема и днища тела, можно упростить. С учетом равенств (20) и краевого условия (9) получаем

$$\frac{p^{i}}{S} - g \frac{S}{2} = -\dot{Q} \int_{x_{l}}^{x} E(x) \, dx + \dot{Q} \left(\frac{I_{1}}{2} - \overline{\left(h_{x} \frac{(H-S)^{2}}{4H^{2}}\right)} \right) - \left(\frac{E(x)}{2S(x)} - \overline{\left(\frac{E}{2S}\right)}\right) Q^{2} + g\bar{\eta} - \overline{\left(\frac{3H^{2} - S^{2}}{2H^{3}}\varphi\right)} - \overline{\left((Hu^{2}h_{x})_{x} \frac{(H-S)^{2}}{4H^{2}}\right)} - gd_{0}.$$

Следовательно,

$$F_{2}(t) = -\dot{Q} \int_{x_{l}}^{x_{r}} \left(\int_{x_{l}}^{x} E(\xi) \, d\xi \right) dx + \dot{Q}L \left(\frac{I_{1}}{2} - \overline{\left(h_{x} \frac{(H-S)^{2}}{4H^{2}}\right)} + \frac{1}{6L} S \Big|_{x_{l}}^{x_{r}} \right) - Q^{2} \int_{x_{l}}^{x_{r}} \frac{E(x)}{2S(x)} \, dx + Q^{2}L \left(\overline{\left(\frac{E}{2S}\right)} + \frac{1}{6L} \frac{S_{x}}{S} \Big|_{x_{l}}^{x_{r}} \right) + L \left(g\bar{\eta} - \overline{\left(\frac{3H^{2}-S^{2}}{2H^{3}}\varphi\right)} - \overline{\left((Hu^{2}h_{x})_{x} \frac{(H-S)^{2}}{4H^{2}}\right)} \right)$$
(26)

 $(L = x_r - x_l - длина тела)$. Заметим, что от двойного интеграла в первом слагаемом правой части формулы (26) можно перейти к однократному интегралу, используя формулу интегрирования по частям:

$$\int_{x_l}^{x_r} \left(\int_{x_l}^x E(\xi) \, d\xi \right) dx = x_r I_1 - \int_{x_l}^{x_r} x E(x) \, dx.$$

В случае NSWE-модели справедлив аналог формулы (26) для вычисления вертикальной компоненты силы

$$F_{2}(t) = -\dot{Q}\left(x_{r}I_{1} - \int_{x_{l}}^{x_{r}} xE(x)\,dx\right) + \dot{Q}L\frac{I_{1}}{2} - Q^{2}\int_{x_{l}}^{x_{r}} \frac{E(x)}{2S(x)}\,dx + Q^{2}L\left(\frac{E}{2S}\right) + Lg\bar{\eta},$$

где E(x) = 1/S(x).

4. Результаты численного моделирования. В качестве начальных данных при использовании SGN- и NSWE-моделей мелкой воды задается уединенная волна

$$\eta(x,0) = \eta_0(x) = a_0 \operatorname{sech}^2(X), \qquad X = k_s(x-x_0), \qquad k_s = \frac{1}{h_0} \sqrt{\frac{3a_0}{4(a_0+h_0)}}; \tag{27}$$

$$u(x,0) = u_0(x) = c_0 \frac{\eta_0(x)}{H_0(x)}, \qquad c_0 = \sqrt{g(a_0 + h_0)}, \qquad H_0(x) = h_0 + \eta_0(x), \tag{28}$$

где $0 < a_0$ — амплитуда волны; $x = x_0$ — положение ее вершины; $0 < x_0 < x_l$; x_l — абсцисса левой грани тела (см. рис. 1). Следует отметить, что при использовании начальных данных (27), (28) SGN-уравнения имеют точное решение в виде солитона, движущегося над горизонтальным дном вправо со скоростью c_0 с сохранением начальной формы.

В случае Рот-модели начальное возвышение $\eta_0(x)$ также задается по формуле (27) и предполагается, что компоненты U_0 , V_0 начальной скорости согласованы с начальными данными для моделей мелкой воды [3]:

$$u_0(x) = \frac{1}{H_0(x)} \int_{-h_0}^{\eta_0(x)} U_0(x, y) \, dy;$$

$$\frac{\partial V_0}{\partial x}(x, y) - \frac{\partial U_0}{\partial y}(x, y) \equiv 0.$$
 (29)

Согласованность ("одинаковость") начальных данных дает возможность сопоставить численные результаты, полученные в рамках модели двумерных потенциальных течений и моделей мелкой воды для одномерных течений, а условие (29) позволяет однозначно определить начальные значения $\Phi(x, y, 0)$ для потенциала вектора скорости [20]. Согласованные с (27), (28) начальные данные для компонент вектора скорости в Рот-модели имеют следующий вид:

$$U_0(x,y) = u_0(x) \Big[1 + \Big(\frac{1}{4} - \frac{3}{4} \frac{(y+h_0)^2}{H_0^2(x)} \Big) \frac{H_0(x)(2a_0 - 3\eta_0(x)) + 4(\eta_0(x) - a_0)\eta_0(x)}{h_0(a_0 + h_0)} \Big],$$

$$V_0(x,y) = \sqrt{3a_0g} \frac{\eta_0(x)}{H_0^2(x)} (y+h_0) \operatorname{th}(X), \qquad -h_0 \leqslant y \leqslant \eta_0(x).$$

Значения параметров для расчетов, результаты которых приведены ниже, соответствуют реальным данным для места стоянки одной из проектируемых полупогруженных конструкций:

$$\frac{a_0}{h_0} = 0.2, \qquad \frac{d_0}{h_0} = -0.3, \qquad \frac{L}{h_0} = \frac{x_r - x_l}{h_0} = 10.$$
 (30)

Эффективная длина уединенной волны λ_s определяется как удвоенное расстояние от точки x_0 до точки, в которой отклонение переднего склона волны от невозмущенного уровня составляет долю П амплитуды a_0 [21]:

$$\lambda_s = \frac{2}{k_s} \ln\left(\sqrt{\frac{1}{\Pi}} + \sqrt{\frac{1}{\Pi} - 1}\right). \tag{31}$$

При $a_0/h_0 = 0,2$, $\Pi = 0,01$ получаем $\lambda_s/h_0 = 16,932$, и во всех расчетах начальное положение вершины волны полагается равным $x_0 = \lambda_s/2$.

Форма дна акватории задавалась по формуле

$$y = -h(x) \equiv -h_0 + b(x),$$

где неровность дна описывается гладкой функцией

$$b(x) = b_0 \operatorname{sech}^2 (k_b(x - x_b)),$$

 b_0 — амплитуда неровности дна (при $b_0 > 0$ имеет место возвышение дна, при $b_0 < 0$ его углубление); $x = x_b$ — вершина неровности, в которой достигается максимум возвышения донной поверхности над горизонтальным дном $y = -h_0$ или максимум углубления. Полагается, что вершина неровности дна находится слева от тела ($x_b \leq x_l$). Эффективная длина неровности определяется по формуле, аналогичной (31):

$$\lambda_b = \frac{2}{k_b} \ln \left(\sqrt{\frac{1}{\Pi}} + \sqrt{\frac{1}{\Pi} - 1} \right).$$

Горизонтальный размер неровности задается отношением

$$\delta = \frac{\lambda_b}{\lambda_s},$$

из которого следует, что $k_b = k_s/\delta$. Значения параметра δ изменялись от $\delta_{\min} = 0.25$ до $\delta_{\max} = 2.0$, т. е. горизонтальный размер неровности дна мог принимать значения от 1/4 до удвоенной длины волны. В последнем случае $\lambda_b/h_0 = 33.864$.

Предполагается, что вершина уединенной волны находится левее неровности дна, причем бо́льшая часть начальной волны располагается над практически горизонтальным участком дна (см. рис. 1).

Во всех расчетах положение тела и длина области оставались неизменными. Координата x_l левой (лицевой) грани рассчитывалась таким образом, чтобы наиболее длинная неровность ($\delta = 2$) примыкала к переднему фронту начальной уединенной волны, а вершина этой неровности располагалась слева от тела на максимально допустимом расстоянии от левой грани. Полагая, что в расчетах расстояние от вершины донной неровности до лицевой грани тела принимает значения $x_l - x_b = \lambda_s$; $0.5\lambda_s$; $0.25\lambda_s$; 0, получаем

$$c_l = 3\lambda_s. \tag{32}$$

Длина расчетной области полагалась равной

$$l = x_l + L + \lambda_s = 4\lambda_s + L,\tag{33}$$

откуда при $a_0/h_0 = 0,2$, $\Pi = 0,01$ получаем l = 77,728.

Итак, во всех расчетах параметры, связанные с начальной волной, положением и осадкой тела и длиной области были неизменными и определялись с помощью формул (30), (32), (33), а амплитуда и длина донной неровности, а также координата ее вершины варьировались.

4.1. Горизонтальная составляющая суммарной волновой силы. На рис. 2 представлены результаты расчетов максимальной горизонтальной составляющей суммарной волновой силы, полученные с использованием SGN- и Pot-моделей, в виде зависимостей от вертикального размера неровности дна b_0 при различных значениях длины неровности и ее удаленности от полупогруженного тела. Видно, что наибольшее влияние на значение горизонтальной силы оказывают длинные неровности, в то время как более короткие препятствия практически не влияют на уединенную волну. Положение препятствия

Рис. 2. Зависимости горизонтальной составляющей суммарной волновой силы от вертикального размера неровности дна b_0 , полученные по результатам расчетов с использованием Рот-модели (1–4) и SGN-модели (5–8) при различных длине и положении неровности:

 $\begin{array}{l} a - \lambda_b = 2\lambda_s, \ \delta - \lambda_b = \lambda_s, \ s - \lambda_b = 0.5\lambda_s, \ s - \lambda_b = 0.25\lambda_s; \ 1, \ 5 - x_b = x_l, \ 2, \ 6 - x_b = x_l - 0.25\lambda_s, \ 3, \ 7 - x_b = x_l - 0.5\lambda_s, \ 4, \ 8 - x_b = x_l - \lambda_s \end{array}$

существенно влияет на эту характеристику: чем ближе препятствие к телу, тем существеннее горизонтальная сила увеличивается в случае возвышения дна и уменьшается в случае впадины. Результаты расчетов горизонтальной силы, полученные с использованием SGN-модели, практически во всех рассмотренных случаях близки к результатам "эталонной" Pot-модели, занижая значения последних на 2–4 %.

4.2. Вертикальная составляющая суммарной волновой силы. Результаты расчетов вертикальной составляющей суммарной волновой силы, полученные с использованием SGN- и Pot-моделей, представлены на рис. 3. В рассмотренных случаях значения этой характеристики на порядок больше значений горизонтальной составляющей силы. В отличие от последней зависимость F_2 от вертикального размера неровности дна b_0 может быть немонотонной, например при длине неровности $\lambda_b = 2\lambda_s$ (см. рис. 3,*a*). При этом даже неровности с большими длиной и вертикальным размером незначительно изменяют максимальное значение F_2 : отличие от результатов расчетов для случая ровного горизон-

Рис. 3. Зависимости вертикальной составляющей вектора волновой силы от вертикального размера неровности дна b_0 , полученные по результатам расчетов с использованием Рот-модели (1–4) и SGN-модели (5–8) при различных длине и положении неровности (обозначения те же, что на рис. 2)

тального дна не превышает 6 %. Зависимости $F_2(b_0)$ в расчетах с использованием SGNи Pot-моделей достаточно близки в случае длинных препятствий (SGN-модель завышает значения приблизительно на 2 %) (см. рис. 3), но существенно различаются в случаях коротких препятствий с вершиной под лицевой гранью тела, когда SGN-модель завышает максимальные значения F_2 до 8 %, и зависимости могут качественно отличаться от зависимостей, построенных по результатам расчетов с использованием Pot-модели (см. рис. 3,*г*).

4.3. Взаимодействие с волной, имеющей вертикальный передний фронт. На рис. 2, 3 приведены результаты расчетов с использованием SGN- и Pot-моделей. В расчетах с использованием NSWE-модели в рассматриваемой постановке происходит обрушение волны и она подходит к полупогруженному телу с вертикальным передним фронтом (рис. 4, *a*). Подобные решения невозможно получить в рамках SGN- и Pot-моделей, однако они представляют интерес при проведении инженерных расчетов, поскольку волновая сила может существенно зависеть от формы подходящей волны. В рассматриваемом случае с ровным горизонтальным дном и значениями параметров (30) амплитуда волны в расчете по

Рис. 4. Формы волны, подходящей к полупогруженному телу, полученные в расчетах с использованием NSWE-модели (1) и SGN-модели (2) (a), а также хронограммы горизонтальной (δ) и вертикальной (ϵ) составляющих суммарной волновой силы

NSWE-модели при подходе к телу уменьшается на 11 % по сравнению с начальной a_0 (в рамках SGN-модели уединенная волна распространяется без изменения формы), тем не менее максимальное значение горизонтальной составляющей волновой силы F_1 , полученное с использованием NSWE-модели, на 20 % больше полученного с использованием SGN-модели (рис. 4, δ). При этом максимальные значения вертикальной составляющей F_2 , полученные в расчетах по SGN- и NSWE-моделям, достаточно близки (рис. 4, δ).

4.4. Влияние положения тела над протяженным углублением дна. Исследуем влияние на волновую силу положения тела, закрепленного над протяженным углублением дна акватории. Конфигурацию дна акватории зададим формулой

$$y = \begin{cases} -h_0 - h_0 \operatorname{sech}^2 (k_s(x - x_b)), & x < x_b, \\ -2h_0, & x_b \leq x < x_b + 2L \\ -h_0 - h_0 \operatorname{sech}^2 (k_s(x - x_b - 2L)), & x > x_b + 2L \end{cases}$$

 $(x_b = 1,5\lambda_s)$, а положение лицевой грани тела будем изменять от $x_l = \lambda_s$ до $x_l = \lambda_s + 36h_0$ (рис. 5,*a*). На рис. 5,*б*,*в* показаны зависимости максимальных горизонтальной и вертикальной составляющих волновой силы от положения тела x_l . Результаты расчетов, полученные с использованием SGN-модели, показывают, что горизонтальная составляющая F_1 уменьшается при расположении тела над глубоководной частью и ее минимальное значение достигается при расположении вблизи дальней "стенки" впадины. Для исследования воздействия более длинных волн на рис. 5,*б*,*в* приведены результаты расчетов, в которых в качестве начальных данных задавалась одиночная волна [3] с длиной $\lambda_s = 100h_0$; 500 h_0 . В этих случаях горизонтальная сила оказывается существенно меньше, а ее минимальное значение также достигается при расположении тела над впадиной. Более сложная зависимость с несколькими локальными максимумами и минимумами наблюдается в случае вертикальной составляющей F_2 . При этом длинные волны одновременно взаимодействуют с телом и стенками впадины, что оказывает существенное влияние на максимальное значение вертикальной силы.

Рис. 5. Схема расчетной области в задаче о влиянии положения полупогруженного тела над впадиной (для крайних исследуемых положений) (a), а также зависимости максимальных горизонтальной (б) и вертикальной (в) составляющих суммарной волновой силы от положения левой грани тела x_l , полученные в расчетах с уединенной волной (1) и одиночными волнами различной длины $(2 - \lambda_s = 100h_0, 3 - \lambda_s = 500h_0)$

Заключение. В работе представлены результаты численного исследования задачи о взаимодействии уединенной волны с неподвижным полупогруженным телом, которая решалась с использованием модели потенциальных течений идеальной жидкости, выполняющей роль "эталонной", а также полностью нелинейной дисперсионной SGN-модели и бездисперсионной NSWE-модели. Исследовалось влияние неровностей дна на значения горизонтальной и вертикальной составляющих суммарной волновой силы, получены формулы для вычисления этих величин в моделях мелкой воды.

Показано, что более существенное влияние неровности дна оказывают на горизонтальную составляющую силы, в то время как вертикальная составляющая в рассмотренных случаях изменяется менее чем на 6 %. Длинные неровности оказывают большее влияние, а короткие практически не влияют на уединенную волну. Положение препятствия также имеет большое значение при расчете характеристик взаимодействия: чем ближе препятствие к телу, тем существеннее проявляется его влияние на эти величины. В некоторых случаях зависимость максимальной вертикальной составляющей силы от вертикального размера неровности имеет немонотонный характер. Результаты исследования влияния положения тела над протяженной впадиной показывают, что горизонтальная составляющая силы уменьшается в случае расположения тела над глубоководной частью и ее минимум достигается при положении вблизи дальней "стенки" впадины.

Оценки суммарной горизонтальной силы воздействия волны на тело, полученные с использованием SGN-модели, практически во всех рассмотренных случаях предельно близки к результатам, полученным с использованием "эталонной" Pot-модели. Значение вертикальной компоненты силы в большей степени зависит от порядка гидродинамической аппроксимации модели. Так, отличия от результатов, полученных по "эталонной" Pot-модели, проявляются по мере уменьшения длины неровности дна относительно длины набегающей на тело волны. Это отчетливо видно в случае, когда горизонтальный размер неровности составляет 1/4 длины набегающей на тело волны. При расчете в рамках NSWE-модели взаимодействовать с телом может волна с вертикальным передним фронтом, что существенно увеличивает горизонтальную составляющую суммарной волновой силы, однако не оказывает влияния на максимальное значение вертикальной составляющей.

ЛИТЕРАТУРА

- Гусев О. И., Скиба В. С., Хакимзянов Г. С., Чубаров Л. Б. Моделирование взаимодействия длинных волн с берегом и прибрежными конструкциями // Нелинейные волны — 2022: Тез. докл. Всерос. конф. с международным участием, Новосибирск, 2–4 марта 2022 г. С. 17. [Электрон. ресурс]. Режим доступа: http://conf.nsc.ru/files/conferences/nw2022/683984/Abstracts.pdf. Новосибирск: Ин-т гидродинамики, 2022.
- 2. **Пелиновский Е. Н.** Гидродинамика волн цунами. Н. Новгород: Ин-т прикл. физики РАН, 1996.
- 3. Gusev O. I., Khakimzyanov G. S., Chubarov L. B. Numerical investigation of the wave force on a partially immersed rectangular structure: Long waves over a flat bottom // Ocean Engng. 2021. V. 221. 108540.
- 4. Коробкин А. А. Фундаментальное решение задачи Коши Пуассона для бассейна с неровным дном // ПМТФ. 1990. № 2. С. 40–47.
- 5. Коробкин А. А., Стурова И. В. Плоская задача Коши Пуассона для бассейна с плавно меняющимся дном. Примеры численных расчетов // ПМТФ. 1990. № 3. С. 54–60.
- Dingemans M. W. Water wave propagation over uneven bottoms. Singapore: World Sci., 1997. (Adv. ser. on ocean engng; V. 13).
- 7. Букреев В. И. Ондулярный прыжок при обтекании открытым потоком порога в канале // ПМТФ. 2001. Т. 42, № 4. С. 40–47.
- Букреев В. И., Гусев А. В. Волны за ступенькой в открытом канале // ПМТФ. 2003. Т. 44, № 1. С. 62–70.
- Хажоян М. Г., Хакимзянов Г. С. Численное моделирование обтекания ступеньки потоком идеальной несжимаемой жидкости // ПМТФ. 2006. Т. 47, № 6. С. 17–22.
- Sundar V. Ocean wave dynamics for coastal and marine structures. Singapore: World Sci., 2021. (Adv. ser. on ocean engng; V. 52).
- 11. Lu X., Wang K.-H. Modeling a solitary wave interaction with a fixed floating body using an integrated analytical-numerical approach // Ocean Engng. 2015. V. 109. P. 691–704.
- Chen Y.-H., Wang K.-H. Experiments and computations of solitary wave interaction with fixed, partially submerged, vertical cylinders // J. Ocean Engng Marine Energy. 2019. V. 5, N 2. P. 189–204.
- Li Y., Lin M. Wave-body interactions for a surface-piercing body in water of finite depth // J. Hydrodynamics. 2010. V. 22, N 6. P. 745–752.
- Камынин Е. Ю., Максимов В. В., Нуднер И. С. и др. Исследование взаимодействия уединенной волны с частично погруженным неподвижным сооружением // Фундам. и прикл. гидрофизика. 2010. № 4. С. 39–54.
- 15. **Нуднер И. С., Семенов К. К., Хакимзянов Г. С., Шокина Н. Ю.** Исследование взаимодействия длинных морских волн с сооружениями, защищенными вертикальными экранами // Фундам. и прикл. гидрофизика. 2017. Т. 10, № 4. С. 31–43.
- Lin P. A multiple-layer σ-coordinate model for simulation of wave-structure interaction // Comput. Fluids. 2006. V. 35, N 2. P. 147–167.
- Khakimzyanov G. Dispersive shallow water waves. Theory, modeling, and numerical methods / G. Khakimzyanov, D. Dutykh, Z. Fedotova, O. Gusev. Basel: Birkhäuser, 2020. (Lecture notes in geosystems mathematics and computing).
- Khakimzyanov G. S., Dutykh D. Long wave interaction with a partially immersed body. Pt 1. Mathematical models // Comm. Comput. Phys. 2020. V. 27, N 2. P. 321–378.

- Khakimzyanov G. S., Dutykh D., Gusev O. I. Long wave interaction with a partially immersed body. Pt 2. Numerical results // arXiv:2204.08210v1 [physics.flu-dyn]. 2022. DOI: 10.48550/arXiv.2204.08210.
- Khakimzyanov G., Dutykh D. Numerical modelling of surface water wave interaction with a moving wall // Comm. Comput. Phys. 2018. V. 23, N 5. P. 1289–1354.
- Гусев О. И., Хакимзянов Г. С., Чубаров Л. Б., Дутых Д. Оценки влияния частотной дисперсии на характеристики взаимодействия уединенных волн с плоским береговым склоном // ПМТФ. 2021. Т. 62, № 4. С. 114–123.

Поступила в редакцию 30/V 2022 г., после доработки — 23/VI 2022 г. Принята к публикации 27/VI 2022 г.