17. Одицов В. А., Селиванов В. В., Чудов Л. А. Расширение идеальнопластической цилиндрической оболочки под действием продуктов детонации.— ПМФТ, 1974, № 2.—
22. Одицов В. А., Селиванов В. В., Чудов Л. А. Движение упругопластической оболочки с фазовым переходом под действием продуктов детонации.— Изв. АН СССР. МТТТ. 1974, № 3.
23. Кузнецов В. М. О нестационарном распространении системы трещин в хрупком материале.— ПМФТ, 1988, № 2.
30. Годунов С. К., Дербас А. А. и др. Исследование вязкости металлов при высокоскоростных соударениях.— ФГВ, 1974, № 7, № 1.
31. Степанов Г. В., Воислеко Л. П. Определение коэффициента вязкости алюминиевого сплава Д16 при взрывном нагружении.— ИПМ, 1984, № 10.
33. Иванов А. Г., Кочетков И. И. и др. Высокоскоростное разрушение тонкостенных труб из мягкой стали.— ПМФТ, 1983, № 4.
34. Воробьева Л. П., Гайнуллин М. С. и др. Экспериментальное исследование движения цилиндрических оболочек под действием продуктов взрыва в полости.— ПМФТ, 1974, № 6.

Поступила 24/ХII 1985 г.

УДК 539.42 : 620.172.234

Кинетические переходы в средах с микротрецинами и разрушение металлов в волнах напряжений

В. В. Белова, О. Б. Наймарк

(Пермь)

В настоящее время признание законного дефекта структуры твердых тел получили микротрециины. Исследования, проведенные в металлах микроскопическими методами, показывают, что деформирование при различных видах нагружения (разные пластические деформации, полкусть, динамические и усталостные напряжения) сопровождается множественным зарождением и ростом микротрециины [1—4]. Последние характеризуются распределением по размерам, обладают анизотропией и формой (большей для хрупких тел и меньшей для пластичных), разрушение и релаксационные свойства существенно определяются микротрециной рост микротрециины [5]. Экспериментальное изучение разрушения при ударных нагрузках также установило множество зарождений и рост микротрециины в волнах напряжений [3, 4, 6, 7]. Фрактографическое изучение показывает, что динамическое разрушение, как правило, включает следующие основные стадии: быстрое зарождение микротрециины, рост их под действием растягивающих напряжений, слияние микротрециины и разрушение материала с образованием одной или более свободных поверхности. Исходя из характерной формы микротрециины в [3, 4, 6] разрушение при ударно-волновых нагрузках, как и при квазистатических, подразделяется на два класса: взаимное и взрывное. В [3, 8—10] исследовался вопрос о корреляциях динамических и квазистатических данных, характеризующих разрушение как процесс накопления микротрециины.

11*
Этот аспект разрушения, по-видимому, заслуживает детального изучения, так как наблюдаемая общность процессов зарождения и роста микротрешин при существенно отличных режимах нагружения позволяет связать с микротрешинами переменную - независимую термодинамическую координату — и рассматривать ее как универсальный структурный параметр. Известные и настоящие времени модели процесса разрушения, учитывающие зарождение и рост микротрешин, рассматривают его как правило, с феноменологических позиций. Однако, как отмечается в [11, 12], в основе описания деформирования и разрушения сред с дефектами этого типа должна лежать статистическая модель накопления дефектов, включающая исследование всего ансамбля микротрешин, каждая из которых развивается в случайном поле напряжений, определяемом микротрешинами окружения и микропористостью материала. Эксперименты показывают, что во всем реальном твердом теле существуют зародышья разрушения в виде тех или иных несовершенств. Поэтому при построении модели разрушения необходимо рассматривать рост разрушения из уже существующих дефектов. Характерно также, что физические закономерности процесса разрушения определяются локальными соотношениями, которые существенно изменяются даже при постоянстве начальных величин.

1. В [13, 14] предложена статистико-термодинамическая модель твердых тел с микротрешинами. В качестве дополнительной переменной состояния, характеризующей объемную концентрацию микротрешин и их преимущественную ориентацию, использован симметричный тензор \(p_{ik} \) — тензор плотности микротрешин. Последний определяется соотношением по статистическому ансамблю микротрешин

\[
p_{ik} = n \int s_{ik} W ds \delta_{sv} \delta_{sv}
\]

где \(s_{ik} = s_{iv}v_{iv} \) — симметричный тензор, определяющий объем \(s \) и ориентацию \(v \) микротрешин «нормального» отрыва; \(W = Z^{-1} \text{exp} (-E/T) \) — функция распределения Гиббса микротрешин по размерам и ориентациям; \(Z \) — нормирующий множитель; \(E \) — энергия микротрешин; \(T \) — температура, измеренная в энергетических единицах; \(n \) — число микротрешин в единице объема \((n \approx 10^{14} - 10^{15})\).

Изучение свойств упругой среды с микротрешинами на основе уравнения (1.1) для одноосного растяжения образца позволило выяснить характерные реакции твердых тел на трещинообразование [14]. На рис. 1, а изображены зависимости параметра \(p_{zz} \) от напряжения \(\sigma_{zz} \) при фиксированной температуре \(T \) для различных значений структурного параметра \(\delta \) (кривые \(I-\delta \) соответствуют \(\delta < \delta_r, \delta_r < \delta < \delta_\ast, \delta > \delta_\ast \)). В [15] показано, что величина последнего зависит от остевых и межатомных характеристик материала: среднего размера структурной гетерогенности и корреляционного радиуса полей микронапряжений, вносимых микротрешинами. Для значений \(\delta > \delta_\ast \) зависимость \(p_{zz}(\sigma_{zz}) \) носит монотонный характер: приложенному напряжению отвечает единственная концентрация микротрешин, и реакция на трещинообразование является обратимой. Этот результат подтверждается экспериментами [5, 16]. В интервале \(\delta_r < \delta < \delta_\ast \) наблюдается метастабильность по параметру \(p_{zz} \), связанная с ориентационными степенями свободы микротрешин. При этом в области неоднозначности происходит резкое изменение объемной концентрации микротрешин. Такой характер изменения плотности материала в ходе деформирования впервые был обнаружен Баумангером и впоследствии подтвержден значительным числом экспериментов [17]. Для значений \(\delta < \delta_r \) скачок по параметру \(p_{zz} \) будет бесконечным, а в области \(\sigma_{zz} > \sigma_\ast \) реакция материала на зарождение и рост микротрешин становится абсолютно неустойчивой. Иллюстрации кривых \(p_{zz}(\sigma_{zz}) \) приведены на рис. 1, б, где показаны соответствующие характерным реакциям зависимости части свободной энергии, связанной с микротрешинами, \(F = -nT \ln Z \) (сравними \(I-\delta \) отвечают \(\delta > \delta_\ast \) при \(\sigma = \sigma_r, \delta_r < \delta < \delta_\ast \) при \(\sigma = \sigma_r \). Для значений \(\delta > \delta_\ast \) на кривых имеется один минимум; метастабильность фазы в области перехлеста \(\delta_r < \delta < \delta_\ast \) связана с существованием двух минимумов функции \(F(p_{zz}) \). При \(\delta < \delta_r \) множество значений напряжений, меньших \(\sigma_\ast \), соответствует область метастабильности, однако правый минимум функции \(F(p_{zz}) \) та...
новится бесконечно глубоким, и объемная концентрация микротреции при конечном напряжении может стать сколько угодно большой.

Изучение взаимосвязи кинетики трещинообразования и пластической деформации проведено в [18] в приближении локального равновесия. Диссипативная функция для системы, в которой существуют пластическими релаксация и дисперсное разрушение, имеет вид

\[TP_s = \frac{q_{ik}}{T} \frac{d\sigma_{ik}}{d\varepsilon_{ik}} + \sigma_{ik}^\prime \varepsilon_{ik}^\prime + \sigma_{ik} \varepsilon_{ik}^\prime + \Pi_{ik} \frac{\Delta p_{ik}}{\Delta t} - \Pi p \geq 0 \quad (i, k = 1, 2, 3), \]

где \(P_s \) — производство энтропии; \(q_{ik} \) — компоненты вектора потока тепла; \(\Pi_{ik} = \frac{\partial F}{\partial p_{ik}} \) — термодинамическая сила, действующая на систему, когда значение \(p_{ik} \) отличается от равновесного; \(\sigma_{ik}^\prime, \varepsilon_{ik}^\prime, p_{ik}', \Pi_{ik} \) и \(\sigma, \varepsilon, p \); \(\Pi \) — бесследовые и изотропные компоненты тензоров напряжений, скоростей пластических деформаций, параметра плотности микротреции и тензора \(\Pi_{ik} \); \(\frac{\Delta p_{ik}}{\Delta t} = \frac{\partial p_{ik}}{\partial t} - \omega_{ik} P_{ik} - \omega_{ik} P_{ik} - \text{тепловая производная по времени} \) (производная по Яманну [19]); \(\omega_{ik} \) — антисимметричный тензор вытreta.

Согласно (1.2), в линейном приближении по равновесности определяющие уравнения записываются как [13, 20]

\[q_{ik} = \lambda_{ik} \left(p_{ab} \right) \frac{\partial T}{\partial x^a}; \]

\[\sigma = \zeta(p) \varepsilon - \alpha(p) p; \]

\[\Pi = \alpha(p) \varepsilon - \beta(p) p; \]

\[\sigma_{ik}^\prime = L_{iklm}^{(1)} \left(p_{ab} \right) \varepsilon_{lm} - L_{iklm}^{(2)} \left(p_{ab} \right) \frac{\Delta p_{lm}}{\Delta t}; \]

\[\Pi_{ik}^\prime = L_{iklm}^{(3)} \left(p_{ab} \right) \varepsilon_{lm} - L_{iklm}^{(4)} \left(p_{ab} \right) \frac{\Delta p_{lm}}{\Delta t}. \]

С учетом симметрии коэффициентов \(\alpha, L_{iklm}^{(2)} \) и при условии положительной определенности коэффициентов \(\lambda_{ik}, L_{iklm}^{(1)}, L_{iklm}^{(2)}, L_{iklm}^{(3)}, L_{iklm}^{(4)}, L_{iklm}^{(5)}, L_{iklm}^{(6)}, L_{iklm}^{(7)}, L_{iklm}^{(8)}, L_{iklm}^{(9)} \).

Уравнения (1.3)—(1.7) квазилинейные: кинетические коэффициенты \(\lambda_{ik}, \zeta, \alpha, \beta, L_{iklm}^{(1)}, L_{iklm}^{(2)} \) в общем случае зависят от \(p_{ik} \). Связанная со структурным параметром \(p_{ik} \) анизотропия кинетических коэффициентов описывает
деформационную анизотропию механических свойств и появление текстур в пластически деформируемом материале. С учетом симметрии тензора p_{ik} общий вид зависимости кинетических коэффициентов $l^{(v)}_{iklm}$ от p_{ik} следующий:

$$(1.8) \quad L^{(v)}_{iklm} - l^{(v)}_{iklm} = \varepsilon^{(v)}_{i(l0} \delta_{k0} + \varepsilon^{(v)}_{i0} \left(\rho_{12} \delta_{hlm} + \rho_{11} \delta_{lkm} \right) + l^{(v)}_{12} p_{ik} P_{lm}$$

$(l^{(v)}, l^{(v)}_{12}, l^{(v)}_{12})$ — феноменологические коэффициенты). Аналогично для тензора коэффициентов теплопроводности λ_{ikh}, соосного с тензором p_{ik}, имеем представление

$$l^{(v)}_{ikh} = \lambda_{0} \delta_{ikh} + \lambda_{1} p_{ikh},$$

где λ_{0} — коэффициент теплопроводности исходно изотропного материала; λ_{1} — параметр материала, в общем случае зависящий от инвариантов тензора p_{ik}.

Уравнения состояния материала включают соотношения релаксационного типа для тензора напряжений (1.4), (1.6) и уравнения движения для параметра p_{ik} (1.5), (1.7). В этих уравнениях учтены «перекрестные» эффекты: влияние трещинообразования на релаксационные процессы и пластичности на кинетику роста p_{ik}. В дальнейшем рассматривается случай, когда пластические деформации подчиняются условию $Sp c_{ik}^{0} = 0$, а среднее напряжение σ определяется упругими составляющими тензора деформации

$$(1.9) \quad \sigma_{ik}^{2} = \frac{1}{2} \left(\sigma_{ik} - \sigma_{ik} \right) + \frac{1}{2} \sigma_{ik}$$

$(\mu, K$ — модули сдвигового и объемного сжатия).

Уравнения состояния (1.4)—(1.7) использовались в [18] при описании закономерностей деформирования и разрушения в условиях ползучести и растяжения с постоянной скоростью деформации u_{z}.

На рис. 2 проведено качественное сопоставление характерных деформационных кривых с кинетическими зависимостями, отражающими изменение p_{ik}. При высоких скоростях деформации зависимость $\sigma_{z}(u_{z})$ имеет почти линейный характер (кривая 1). Резкое снижение сопротивления деформированию, начиная с некоторых значений p_{z}, связано с интенсивным ростом объемной концентрации микротрешин при переходе на абсолютно неустойчивую ветвь зависимости $p_{z} A(\sigma_{z})$ (см. рис. 1, a, кривая 1). Процесс накопления микротрешин в этом случае развивается в режиме взрывной неустойчивости. При уменьшении скорости деформации линейный участок сменяется участком пластичности с нелинейным упрочнением (кривая 2), который, как и в первом случае, переходит в пас- падающую ветвь, соответствующую линейно-упруго-изотропному росту микротрешины. В некотором диапазоне скоростей деформаций наблюдается неустойчивое деформирование (кривая 4), сопровождающееся появлением «губ» и площадки текучести.

Проявление неустойчивости связано с наличием области метастабильности по параметру p_{z}. В условиях перехода с низкой на высокую ветвь в области метастабильности (см. рис. 1, a, кривая 2) резко увеличивается темп релаксации. При относительно невысоких скоростях деформации переход с низкой на высокую ветвь происходит почти по линии равновесного перехода $c - c$ и «губа» текучести практически не наблюдается (кривая 5). С увеличением скорости деформации имеет место более глубокое проникновение в область метастабильности, что приводит к росту величины скачка по напряжениям с эффективным увеличением предела упругости (кривая 5). Участок упрочнения при этом проходит также выше, что объясняется ростом взаимного сопротивления деформированию.

Таким образом, предложенная система уравнений позволяет описывать различные реакции твердых тел на деформирование с учетом нелинейной кинетики по параметру плотности микротрешин p_{ik}.
2. Рассмотрим постановку задачи об отколе при распространении в пластине плоской одномерной волны скатия в направлении оси \(z \). В этом случае \(e_{xx}^{p} = e_{yy}^{p} = u_{xx}^{p} = u_{yy}^{p} = 0 \), \(p_{xx} = p_{yy} = 0 \). Ограничимся в \((1.8) \) первыми членами разложения, тогда с учетом введенных предположений система уравнений состояния совместно с законами сохранения массы и импульса принимает вид

\[
\begin{align*}
\dot{\rho} &= -\frac{1}{\rho} \Pi; \\
\sigma_{zz}^{'} &= l_{1} e_{zz}^{'} - l_{2} \frac{\partial \sigma_{zz}^{'} t}{\partial t}; \\
\Pi_{zz}^{'} &= l_{1} e_{zz}^{'} - l_{3} \frac{\partial \Pi_{zz} t}{\partial t}; \\
\frac{\partial \rho}{\partial t} &= -\frac{\partial}{\partial x}(\rho v_{z}); \\
\frac{\partial}{\partial t}(\rho v_{z}) &= -\frac{\partial}{\partial x}(\sigma_{zz}^{'} - \sigma_{zz});
\end{align*}
\]

gде \(\rho \) — плотность материала; \(v_{z} \) — компонента вектора скорости.

Приведенные уравнения необходимо дополнить также кинематическим соотношением, связывающим тензор скоростей необратимых (пластических) деформаций \(e_{ik}^{p} \) со скоростями упругой \(u_{ik}^{h} \) и полной \(u_{ik} \) деформацией. Расчет деформаций в задаче о соударении пластин [21] показал, что компоненты тензора деформации не превышают в условиях отколового разрушения металлов 0,01. При таких значениях кинетическое соотношение

\[
u_{ik}^{h} = e_{ik}^{h} + u_{ik}^{h}.
\]

Преобразуя уравнения \((2.1)-(2.5)\) с учетом соотношений \((1.9)\) и \((2.6)\), после введения параметров \(\sigma = \sigma_{zz}/\rho c_{l}^{2}, \quad \tilde{\tau} = t/\tau_{l}, \quad t_{l} = h/c_{l}, \quad c_{l} = \sqrt{K/\mu + h/12}, \quad v = v_{z}/c_{l}, \quad \tilde{\rho} = \rho/\rho_{e} \), \(\xi = (h/c)^{-1} \), \(\tau_{l} \) — толщина пластины, \(\Pi' = \frac{1}{\rho_{e}} \), \(\Pi_{zz} = \frac{1}{\rho_{e}} \Pi_{zz}, \quad \Pi_{zz} = \frac{1}{\rho_{e}} \), \(\tau_{m} = \eta(1/\mu, \alpha = \frac{2}{3} \frac{\rho_{e}^{2}}{\sqrt{3K + 2\mu} \rho_{e}^{2}}, \quad \alpha = \frac{\sigma_{zz}}{\rho_{e}}, \quad \eta = \frac{1}{\rho_{e}} \text{ уравнения преобразуются (символ ~ безразмерных переменных в дальнейшем опускаем):}

\[
\begin{align*}
\frac{\partial \rho}{\partial \tau} &= -\Pi_{0}, \quad \frac{\partial \rho}{\partial \tau} = \frac{2}{3} \alpha \left(\frac{\partial v}{\partial x} - 4 \frac{\partial \sigma_{zz}}{\partial x} \right) - \Pi_{0}, \\
\frac{\partial \sigma_{zz}}{\partial \tau} &= \frac{\partial \sigma_{zz}}{\partial x} - \frac{\tau_{l}}{\tau_{m}} \frac{\partial v}{\partial x} - \frac{\partial \Pi_{zz}}{\partial x} \frac{\partial \rho}{\partial x} = \frac{\partial v}{\partial x} \left(\rho \sigma_{zz} - \alpha c \right) \frac{\partial \rho}{\partial x} = \frac{\partial \sigma_{zz}}{\partial x} \frac{\partial \rho}{\partial x}.
\end{align*}
\]

Требуется найти численное решение системы \((2.7)\), удовлетворяющую граничным

\[
\sigma(0, t) = \sigma_{0}(t), \quad \sigma(1, t) = 0
\]

и начальным условиям

\[
v(\xi, 0) = \sigma(\xi, 0) = \rho(\xi, 0), \quad 0 = \rho(\xi, 0) = 1.
\]

Здесь \(\sigma_{0}(t) \) — заданная функция; \(\sigma = \sigma_{0}(t) \) при \(t \leq t_{1} ; \quad \sigma_{0}(t) = 0 \) при \(t > t_{1} \). Для постановки конечно-разностного аналога уравнений использована явная разностная схема второго порядка точности [22]. Параметры временной и пространственной сетки выбиралась в соответствии с условием устойчивости \(\Delta t \leq \min \{ L_{L} / \Delta x / a \} \), где \(L_{L} \approx 1 / 3 \) — число Куранта, \(a \) — местная скорость звука. Функции \(\Pi' \) и \(\Pi_{0} \), представленные в
[15] через статистические интегралы, аппроксимировались конечными выражениями

\[\Pi' = -A\sigma \exp\left(-\frac{\sigma^2}{\sigma^2}
ight) + B(p' - p_b), \]

\[\Pi^0 = \begin{cases} \frac{-\sigma}{\sigma^2}\exp(p) & \text{при } \sigma \geq \sigma_0, \\ 0 & \text{при } \sigma < 0 \end{cases} \]

(\(A, B, p_a, p_b, L\) — параметры аппроксимации).

В [23] анализируются некоторые конкретные выражения для кинетического уравнения, описывающего рост концентрации микротрецины, и отмечается, что экспоненциальный характер зависимости скорости накопления микротреции от \(p\), позволяет получить качественно верную картину разрушения в условиях откола.

Входящие в уравнения константы определялись по данным экспериментов на получение алюминия [24, 25] и принимались равными

\[\alpha = 2,5, \quad \sigma = 0.5, \quad \tau_m = 3 \cdot 10^{-6} \text{ c}, \quad \tau_t = 4.06 \cdot 10^{-6} \text{ c}, \]

\[A = 3, \quad B = 0.45, \quad p_a = 3 \cdot 10^{-6}, \quad p_b = 10^{-3}, \quad L = 7 \cdot 10^{-13}. \]

В [23] отмечается, что необходимо согласовать единый кинетический подход к разрушению результаты исследования откола и разрушение при длительном воздействии на длительность и амплитуду отрицательных напряжений соответственно \(\sigma_a = 7\) и \(8\) ГПа.

На рис. 3 приведены результаты численного моделирования распространения волн напряжений и изменения во времени бесследовой компоненты параметра плотности микротреции \(p_{zz}\) в сечении откола (\(t = 0.75\) и \(1,5\) мкс — кривые 1 и 2, сплошные — прямоугольный импульс, штриховы — треугольный).

В области напряжений, приближенной соответствующей динамическому пределу текучести, реализуется кинетический переход по параметру \(p\), что приводит к резкому увеличению темпа релаксации напряжений, изменению профиля пластической волны и выделению упругого предвестника. В [26] отмечается, что структура ударных волн в основном определяется зависимостью времени релаксации от параметров, характеризующих среду и изменяющихся в процессе нагружения. Особенность предложенного описания состоит в том, что резкое изменение параметра \(p_{\text{уд}}\), приводящее к существенному уменьшению времени релаксации напряжений, реализуется в ситуации, аналогичной фазовому переходу первого рода. Подобная динамическая реакция твердых тел наблюдается при полиморфных превращениях — переходах твердых тел из одной кристаллической модификации в другую [27]. В этом случае по веществу распространяются две ударные волны, следующие одна за другой. Расщепление волн связано с аномальной ходом ударной адиабаты вещества в области фазового перехода,
аналог которого — резкое изменение ориентационной моды микротреции, приходящее к скачку величины деформаций [14].

Таким образом, используя тензорный параметр повреждённости и учитывая нелинейную кинетику его изменения в процессе деформирования, можно описать упруговязкопластическое поведение, в том числе и неустойчивую пластическую реакцию, в рамках релаксационного уравнения для тензора напряжений. В [26] предложена модель, учитывающая изменение времени релаксации, на ее основе изучена структура волновых фронтов. Изменение времени релаксации описано с привлечением активационных соотношений, учитывающих уровень действующих напряжений. По существу, это соответствует предположению, что времена релаксации по параметру p_{1k} — характерные времена установления равновесия по структурным изменениям в материале — существенно меньше времени релаксации напряжений. В рассматриваемом описании этого предположения не делается.

Отражение волн сжатия от свободной поверхности приводит к формированию растягивающего импульса, появлению объемных изменений в материале за счет роста микротреции и разрушению.

Кинетика роста объемной концентрации микротреции представлена на рис. 4 (a — для 3,065; 3,0202 и 2,975 мкс (линии 1—3), $c_{0} = 4$ ГПа; b — для 3,4710; 3,3552; 2,9285; 2,9287 и 2,828 мкс (линии 1—5), $c_{0} = 7$ ГПа), она отражает следующие стадии дисперсного разрушения. В области значений феноменологических параметров, соответствующих $\delta > \delta_{c}$, процессы роста микротреции характеризуется относительно сла- бым их объемным взаимодействием и дисперсное разрушение в основном сказывается на изменении релаксационных свойств материала. Особенно сильно, как уже отмечалось, это наблюдается при ориентационном перекоде, который сопровождается появлением более упорядоченной системы микротреции. Резкий переход к упорядоченной структуре в макроскопических объемах может приводить к аномалиям деформационных свойств, известных в задачах динамики как разрушение вследствие неустойчивости пластического сдвига [28]. С ростом объемной концентрации микротреции происходит переход на абсолютно неустойчивую ветвь зависимости $p_{1k}(\sigma_{zz})$ (см. рис. 1, a) и процесс разрушения, продолжающий оставаться дисперсным, обретает новые черты, свойственные нелинейным системам в условиях кинетического перехода [29]: в области $\delta < \delta_{c}$, процесс зарождения и роста микротреции характеризуется взрывной неустойчивостью.

Переход через порог воронковой неустойчивости ($\delta = \delta_{c}$) сопровождаетя сменой временной асимптотики для p_{1k} и интенсивным ростом дефектов в полях перенапряжений, порождаемых микротрециями.
ное разрушение сменяется образованием кластеров из дисперсно разрушенных областей, и с этого момента кинетика процесса разрушения определяется взаимодействием кластеров, являющихся очагами макроскопических трещин [15]. Рассматриваемая ситуация аналогична той, какая существует в теории фазовых переходов [30], а также в математической теории горения и взрыва [31]. Как известно, исходные дифференциальные уравнения теории горения и взрыва имеют непрерывные решения, но при выделении асимптотик возникает скачкообразность решений, его критичность к малому изменению параметров, т. е. характер решения существенно изменяется.

Рост объемной концентрации микротрешин сопровождается резким увеличением бесследовой компоненты тензора p_{m1}. Инверсия знака p' (см. рис. 3, б) связана с отражением волны сжатия от свободной поверхности и формированием волны растяжения. С увеличением амплитуды начального импульса нагрузки происходит переход от распределения микротрешин с одним максимумом (рис. 4, а) к множественному образованию очагов (рис. 4, б) — областей с резко увеличенной скоростью роста микротрешин.

Экспериментальная информация о закономерностях откольного разрушения косвенно содержится в измерениях скорости свободной поверхности ударно нагруженных пластин [32]. На рис. 5 изображены рассчитанные профили скорости свободной поверхности u (1 и 2 — прямоугольный и треугольный импульсы). Движение свободной поверхности определяется взаимодействием волн разгрузки и возмущения, образующегося в зоне разрушения в результате роста микротрешин. На профиле u выделяется выход на поверхность упругого предвестника с амплитудой $\sim 0,4$ ГПа. Вслед за упругим предвестником наблюдается выход пластической ударной волны и последующие затухающие колебания скорости u в процессе реверберации откольного импульса. Эти колебания свидетельствуют о том, что внутри образца появлялась либо свободная поверхность, либо область с малой динамической жесткостью [10]. Исследованные закономерности перехода к макроскопическому разрушению позволяют дать объяснение явлению перегрузки при нагрузлениях микросекундной длительности и связанной с ним неоднозначности в определении разрушающих напряжений [33]. Сопоставление кривых $\sigma_{zz}(u_{zz})$ и $p_{m}(u_{zz})$ (см. рис. 2) обнаруживает характерную особенность: различие в максимальных значениях напряжений на зависимостях $\sigma_{zz}(u_{zz})$ практически не отражается на уровне критических значений параметра p_{m}.

Объяснение этой ситуации — существование для уравнений (1.5) и (1.7) автомодельного решения, соответствующего асимптотике, на которой процесс роста микротрешин характеризуется взрывной неустойчивостью [13]. Таким образом, неоднозначность в определении разрушающих напряжений, а также слабая зависимость времени до разрушения от амплитуды начального импульса (явление динамической ветви [8]) при нагрузлениях с длительностью $\sim 10^{-5}$ с связаны с тем, что в условиях ударного нагружения процесс трещинообразования протекает быстрее, чем нарастание растягивающих напряжений в сечении отколя, что и приводит к ограничению перегрузки [34].

ЛИТЕРАТУРА

1. Индзебом В. Л., Орлов А. И. Долговечность материала под нагрузкой и наводнение повреждений. — ФММ, 1977, т. 43, вып. 3.
2. Бетехтин В. И., Владимиров В. И. и др. Пластическая деформация и разрушение кристаллических тел. — Проблемы прочности, 1979, вып. 7—8.
7. Волохов Л. Д., Златин Н. А., Пугачев Г. С. Возникновение и развитие субмикротреции в полиметакрилате при динамическом растяжении (отколе).— Письма в ЖТФ, 1978, т. 4, № 18.
8. Златин Н. А., Пугачев Г. С. и др. Временная зависимость прочности металлов при долговечности микросекундного диапазона.— Изв. АН СССР. ФТГТ, 1975, т. 17, № 9.
9. Волохов Л. Д., Златин Н. А., Пугачев Г. С. О механизме разрушения верхних тел при временах жизни микросекундного диапазона.— Письма в ЖТФ, 1978, т. 4, № 18.
10. Дроздов А. И., Моисеев А. М. Кинетические характеристики откольного разрушения.— ПМТФ, 1980, № 6.
11. Новожилов В. В. О пластическом разрыхлении.— ПММ, 1965, т. 29, вып. 4.
13. Наймарк О. Б. О термодинамике деформирования и разрушения твердых тел с микротрециями. Препринт № 22.— Свердловск: НИИС УНЦ АН СССР, 1982.
14. Наймарк О. Б., Давыдова М. М., Постных А. М. О деформировании и разрушении гетерогенных материалов с микротрециями.— Механика композитов, материалы, 1984, вып. 2.
15. Наймарк О. Б., Давыдова М. М. О статистической термодинамике твердых тел с микротрециями и атомодельности усталостного разрушения.— Пробл. прочности, 1986, вып. 1.
18. Наймарк О. Б. О порообразовании, уравновесии состояния и устойчивости сверхпластического деформирования материалов.— ПМТФ, 1985, № 4.
22. Вазов Ф., Форсайт Д. Разностные методы решения дифференциальных уравнений в частных производных.— М.: ИЛ, 1963.
23. Канел Г. И., Черных Л. Г. О процессе откольного разрушения.— ПМТФ, 1980, № 6.
24. Бетехтин В. И., Савельев В. И., Петров А. И. Кинетика накопления микроскопических размеров плотности в процессе испытания алюминия на долговечность и ползучесть.— ФММ, 1974, т. 38, вып. 4.
26. Годунов С. К., Колчин Н. С. Структура ударных волн в упругопластической среде с нелинейной зависимостью макросредовой вязкостью от параметров вещества.— ПМТФ, 1974, № 5.
27. Зеледович Я. Б., Райзер Ю. Ф. Физика ударных волн и высокотемпературных гидродинамических явлений.— М.: Наука, 1966.
29. Михайлов А. С., Узоров П. В. Критические явления в средах с разным показателем преломления, распадом и диффузией.— УФН, 1984, т. 144, вып. 1.
33. Златин Н. А., Пугачев Г. С. и др. К вопросу о перегрузке твердых тел при нагружении микросекундной длительностью.— Письма в ЖТФ, 1984, т. 4, вып. 2.
34. Наймарк О. Б., Постных А. М. О явлении динамической ветви при отколе и автомодельности процесса накопления микротреции.— Письма в ЖТФ, 1984, т. 10, вып. 20.