УДК 544.452

Влияние Pt-Rh/Pt термопары на горение бензола, пиридина и пиррола в водяном паре при повышенном давлении^{*}

О.Н. Федяева, Д.О. Артамонов, А.А. Востриков

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: fedyaeva@itp.nsc.ru

Представлены результаты исследования окисления бензола, пиридина и пиррола в плотном водяном паре при равномерном нагреве реактора. Из временных зависимостей температуры и давления реакционных смесей следует, что окисление топлив интенсифицируется каталитическим действием Pt-Rh/Pt термопары, введенной в центр реакционного объема. Показано, что температура воспламенения топлив $T_{\rm in}^*$ увеличивается в последовательности $C_6H_6 < C_3H_5N < C_4H_4NH$. Уменьшение коэффициента избытка топлива и плотности воды приводит к снижению температуры $T_{\rm in}^*$. Установлено, что окисление бензола протекает в две стадии и характеризуется низкой степенью выгорания углерода. В обедненной топливом смеси горение пиридина сопровождается детонацией, инициируемой возникновением ударной волны в приповерхностной области Pt-Rh/Pt термопары. Увеличение плотности водяного пара препятствует полному выгоранию углерода. Особенности окисления топлив объясняются различием структуры их молекул и адсорбции компонентов реакционной смеси на поверхности платины.

Ключевые слова: бензол, пиррол, пиридин, Pt-Rh/Pt термопара, водяной пар, горение, детонация.

Введение

Окисление обводненных токсичных отходов в сверхкритической воде (СКВ), происходящее при T > 647,1 K, P > 22,1 МПа, рассматривается в качестве наиболее эффективного и экологически безопасного способа их обезвреживания [1-4]. В отличие от традиционных способов сжигания окисление отходов в СКВ реализуется при существенно меньших температурах ($T \le 923$ K) за приемлемое время без образования токсичных интермедиатов [5]. Например, основными интермедиатами окисления пиррола и пиридина в среде воздуха и инертных газов являются акрилонитрил, синильная и изоциановая кислоты, а конечными продуктами — N₂, NO и NO₂ [6–8]. В то же время, существуют классы соединений: ароматические и полициклические ароматические углеводороды, в том числе гетероциклические, — которые устойчивы к термолизу и окислению при $T \le 923$ K [3], что препятствует их быстрому полному превращению в СКВ.

Согласно исследованиям [9, 10], окисление органического топлива инициируется отрывом атома Н от его молекулы при реакции

$$RH + O_2 \rightarrow R + HO_2. \tag{1}$$

^{*} Работа выполнена при финансовой поддержке РФФИ (грант № 18-29-06005).

[©] Федяева О.Н., Артамонов Д.О., Востриков А.А., 2021

Последующее взаимодействие радикалов R с кислородом приводит к образованию перокси-радикалов

$$R + O_2 \rightarrow ROO,$$
 (2)

накопление и распад которых определяет время задержки воспламенения. Очевидно, что этот параметр, так же как и температура воспламенения, зависит от величины энергии связи С-Н в молекуле топлива. Как видно на рис. 1, где приведены энергии диссоциации связей С-Н и N-Н в молекулах бензола, пиррола и пиридина, рассчитанные с помощью квантово-химических методов [11], наименьшая величина $E_{\rm N-H}$ характерна для пиррола, а наибольшая $E_{\rm C-H}$ — для бензола. Однако, по мнению авторов [12], образование устойчивого пироллильного радикала в результате отрыва атома Н от молекулы пиррола по механизму реакции (1) ингибирует его окисление и приводит к увеличению времени задержки воспламенения по сравнению с пиридином.

Согласно данным [13, 14], окисление бензола в СКВ ($c_{C_6H_6} = 0, 4-1, 2$ ммоль/дм³, T = 752 - 860 K, P = 13,9 - 27,8 МПа, время пребывания в проточном реакторе $\tau = 3-7$ с) протекает через образование сначала фенильного, а затем фенилпероксильного радикала соответственно при реакциях (1) и (2). В работе [14] было показано, что до 90 % углерода при окислении бензола переходит в СО₂; среди остальных продуктов преобладают метан и фенол. При исследовании окисления бензола в более концентрированных растворах (мольное отношение C_6H_6 : $H_2O = (1,8-4,4) \cdot 10^{-2}$, T = 663 - 1075 K, P = 28 - 90 МПа) было обнаружено [15], что процесс реализуется по механизмам теплового и цепно-теплового взрыва. Результаты изучения окисления пиридина в СКВ ($c_{CsH_{SN}} = 13,8-51,9$ ммоль/дм³, T = 699 - 798 К, P = 27.6 МПа, $\tau = 2.1 - 10.7$ с) показывают [16], что процесс инициируется отрывом атома Н от молекулы пиридина при реакции (1) с последующим гидроксилированием ароматического кольца и образованием гидроксипиридина. Из данных по окислению пиридина в СКВ (T = 643-713 К, P = 24,2 МПа) в присутствии Pt/ γ -Al₂O₃катализатора [17] следует, что пиридин может быть полностью окислен при 653 К и 1000 %-ом избытке О₂; в составе продуктов зарегистрированы N₂, N₂O и нитрат-ионы. При изучении окисления пиррола в плотном водяном паре ($T \le 873$ K) авторами [18] была обнаружена зависимость скорости его превращения от наличия в реакторе продуктов коррозии (Fe2.66O4, FeO, CrFeO3, CuO, Cu2O), образующихся при взаимодействии азотной кислоты с конструкционными материалами. Было установлено, что соотношение между NH₃, N₂ и N₂O в продуктах окисления пиррола зависит от коэффициента избытка топлива и плотности водяного пара. Из анализа литературы следует, что имеющиеся данные по окислению бензола, пиридина и пиррола получены для разной плотности топлива, кислорода и водяного пара и не позволяют провести их сравнение.

Целью настоящей работы является выявление особенностей горения бензола, пиррола и пиридина, как простейших ароматических, в том числе N-содержащих соединений, в условиях высокой плотности реагентов и водяного пара в присутствии Pt-Rh/Pt термопары, используемой для измерения температуры реакционной смеси.

Рис. 1. Энергия диссоциации связей С–Н и С–N (кДж/моль) в молекулах бензола (*a*), пиридина (*b*) и пиррола (*c*) по данным работы [11].

Экспериментальная методика

Эксперименты проводились по методике [18, 19] с помощью изготовленного из нержавеющей стали трубчатого реактора длиной 90 мм с внешним и внутренним диаметрами соответственно 60 и 30 мм. Реактор размещался в печи, нагреваемой омическим нагревателем. Скорость нагрева регулировалась термопрограмматором, оснащенным ПИД-регулятором, и хромель-алюмелевой термопарой T₂, установленной в центральной части внешней стенки реактора. Дополнительно температура реактора контролировалась двумя хромель-алюмелевыми термопарами T₁ и T₃, расположенными у его торцов. Температура реакционной смеси (Tin) измерялась Pt-Rh/Pt (S-тип) термопарой, введенной в центр реакционного объема через торец реактора. Основная часть Pt-Rh/Pt термопары располагалась в двухканальной керамической оболочке. Выбор Pt-Rh/Pt термопары обусловлен её коррозионной стойкостью в окислительной атмосфере. Давление реагентов измерялось мембранным тензодатчиком, предел измерения которого равен 100 МПа. Согласно паспортным данным, погрешности измерения температуры и давления составляют соответственно ± 1,5 К и ± 0,03 МПа. Временные зависимости температуры и давления регистрировались в цифровом виде с частотой 10 Гц. Реагенты подавались в вакуумированный реактор по капилляру, вваренному в центральную часть боковой стенки реактора, через регулировочный вентиль. Объем реактора, находящийся внутри печи (реакционный объем), равнялся 67,1 см³, а объем реактора вне печи (куда входит канал ввода термопары T_{in} в реактор и капилляров, связывающих реактор с регулировочным вентилем подачи реагентов и запорным вентилем датчика давления) составлял 1,8 см³.

В опытах использовались бензол (99,8 % мас.), пиридин (99,3 % мас.), пиррол (99 % мас.), кислород (99,95 % об.) и дистиллированная вода. Порядок проведения опытов был следующий. Для предотвращения конденсации топлива (температура кипения бензола, пиридина и пиррола равна соответственно 353, 389 и 403 К [20]) в непрогреваемых объемах реактора последние заполнялось водой. Для этого в вакуумированный реактор через резиновую мембрану с помощью шприца заправлялось 2,5 см³ воды, затем реактор нагревался до 403 К и выдерживался при этой температуре в течение 45 мин (при этом часть воды (≈ 1,8 см³) переконденсировалась в непрогреваемые объемы). После охлаждения реактора до 303 К в него последовательно заправлялось определенное количество топлива, воды и кислорода до заданного давления. Затем реактор нагревался со скоростью 1 К/мин.

Парциальное давление кислорода $P(O_2)$, количество топлива $n_0(F)$, кислорода $n_0(O_2)$ и воды $n_0(H_2O)$ в прогреваемой части реактора, коэффициент избытка топлива φ_F и степень разбавления x_D приведены в табл. 1. Количество $n_0(O_2)$, необходимое для полного окисления топлива, определялось исходя из стехиометрии следующих реакций:

$$C_4H_4NH + 5,25O_2 \rightarrow 4CO_2 + 2,5H_2O + 0,5N_2, \qquad \Delta H^{\circ}_{298} = -2287 \text{ кДж/моль}, \qquad (3)$$

Опыт	Топливо	$P(O_2),$	Коли	0	x_{D} ,		
N⁰	Nº		$n_0(\mathbf{F})$	$n_0(O_2)$	$n_0(\mathrm{H_2O})$	$\varphi_{\rm F}$	мол. %
1	C ₄ H ₄ NH	2,21	10,1	58,0	60	0,91	47
2	C ₄ H ₄ NH	2,51	10,1	66,4	50	0,80	40
3	C ₄ H ₄ NH	2,20	10,1	56,9	110	0,93	62
4	C ₅ H ₅ N	2,41	9,9	63,4	50	0,98	41
5	C ₅ H ₅ N	3,00	9,9	78,9	50	0,78	36
6	C ₅ H ₅ N	2,43	9,9	63,1	100	0,98	58
7	C ₆ H ₆	2,77	7,8	73,0	50	0,80	38
8	C_6H_6	2,28	7,8	59,5	100	0,98	60

Условия экспериментов

Таблица 1

$$C_5H_5N + 6,25O_2 \rightarrow 5CO_2 + 2,5H_2O + 0,5N_2, \Delta H^{\circ}_{298} = -2432$$
 кДж/моль, (4)

$$C_6H_6 + 7,5O_2 \rightarrow 6CO_2 + 3H_2O,$$
 $\Delta H^{\circ}_{298} = -3267 \text{ кДж/моль},$ (5)

здесь величины ΔH°_{298} рассчитаны исходя из условия, что все вещества находятся в газовом состоянии.

Коэффициент избытка топлива и степень разбавления рассчитывались по формулам

$$\varphi_{\mathrm{F}} = k \cdot n_0(\mathrm{F}) / n_0(\mathrm{O}_2), \tag{6}$$

$$x_{\rm D}(\%) = 100 \cdot n_0({\rm H_2O}) / [n_0({\rm H_2O}) + n_0({\rm F}) + n_0({\rm O_2})],$$
(7)

где k — стехиометрический коэффициент перед О₂ в реакциях (3)–(5).

Состав и количество газовых продуктов, образовавшихся при окислении топлива, определялись с помощью квадрупольного масс-спектрометра MS 7303 по методике [21]. Степень выгорания углерода $\alpha_{\rm C}$ и доля азота $\beta_{\rm N}$, перешедшего в N₂, рассчитывались по формулам

$$\alpha_{\rm C}\,(\%) = 100n\,({\rm CO}_2)\,/\,i\cdot n_0\,({\rm F}),\tag{8}$$

$$\beta_{\rm N}\,(\%) = 100n\,({\rm N}_2)\,/\,0.5n_0\,({\rm F}),\tag{9}$$

где $n(CO_2)$ и $n(N_2)$ — количество диоксида углерода и азота в продуктах, i — количество атомов углерода в молекуле топлива.

Результаты и их обсуждение

Изменение разности температур $\Delta T = T_{\rm in} - T_{\rm out}$ и давления реакционной смеси *P* в зависимости от температуры $T_{\rm out}$ при окислении топлив в опытах 1-4 и 6-8 показано на рис. 2. Здесь и ниже $T_{\rm out}$ соответствует заданному увеличению температуры стенки реактора со скоростью 1 К/мин (в отсутствие тепловыделения температура $T_{\rm out}$ соответствует температуре T_2 , регистрируемой термопарой T_2), а $T_{\rm in}$ — температура реакционной смеси, измеряемая внутренней термопарой. На фоне увеличения $T_{\rm out}$ во всех опытах наблюдается прирост температуры ΔT , вызванный воспламенением топлива. Начальный и конечный участки кривых $\Delta T(T_{\rm out})$ лежат в отрицательной области значений ΔT из-за отставания температуры реакционной смеси от температуры стенки реактора.

В табл. 2 приведены следующие параметры кривых $\Delta T(T_{out})$ и реакционной смеси: T_{out}^* и T_{in}^* — соответственно температуры стенки реактора и реакционной смеси, при которых происходит воспламенение; T_{out}^{f} и T_{in}^{f} — температуры, соответствующие окончанию окисления и выходу кривой на базовую линию (базовая линия представляла бы собой прямую, соединяющую прямолинейные участки зависимости $\Delta T(T_{out})$ до и после окисления (на рисунках не приведена)); t_{ox} — продолжительность окисления; T_{out}^{max} и T_{in}^{max} — температуры, соответствующие максимуму кривой $\Delta T(T_{out})$; ΔT^{max} — максимальный прирост температуры; C_v — величины изохорной теплоемкости реакционной смеси, определенные по справочным данным [20, 22]; ΔT_{ad} — расчетные величины прироста температуры реакционной смеси из-за тепловыделения при реакциях (3)–(5) в адиабатических условиях. Методика расчета вышеперечисленных величин приведена в работах [18, 19].

Как видно из табл. 2, температура воспламенения топлив T_{in}^* увеличивается в последовательности: бензол < пиридин < пиррол. Уменьшение коэффициента избытка топлива φ_F и степени разбавления x_D приводит к снижению температуры T_{in}^* . Из справочных данных по плотности воды [22], величин n_0 (H₂O) и объема реактора, свободного для газа, следует, что при n_0 (H₂O) = 50, 60, 100 и 110 ммоль (табл. 1) вода полностью испарится

Теплофизика и аэромеханика, 2021, том 28, № 5

Рис. 2. Зависимости прироста температуры ΔT (1-4, 6-8) и давления Р (2', 4', 6'-8') реакционной смеси от заданной температуры реактора T_{out} при окислении пиррола (*a*), пиридина (*b*) и бензола (*c*) в водяном паре. Номера кривых соответствуют номерам опытов в табл. 1.

соответственно при 501, 511, 541 и 546 К. Это означает, что к моменту воспламенения топлива вся вода находилась в газовой фазе и энергия, выделяющаяся при его окислении, не расходовалась на испарение воды. Таким образом, тепловыделение, регистрируемое термопарой $T_{\rm in}$, определяется теплоемкостью реакционной смеси и экзотермическими реакциями окисления топлива в газовой фазе и на поверхности термопары. Экзотермические реакции на стенке реактора почти не влияют на показания термопары $T_{\rm in}$

Характернети секие то тки кризля на рис. 2, о и тернодинами ческие нараметры реакционной смеси											
Опыт №	Топливо	${T_{\text{out}}}^*,$ K	<i>T</i> _{in} [*] , K	$\begin{array}{c}T_{\mathrm{out}}^{\mathrm{f}},\\\mathrm{K}\end{array}$	T _{in} ^f , K	t _{ox} , мин	T_{out}^{max}, K	T_{in}^{max} , K	ΔT^{\max} , K	С _v , Дж/К	$\Delta T_{ad},$ K
1	C ₄ H ₄ NH	615	612	693	690	78	634	847	215	4,7	4915
2	C_4H_4NH	603	599	718	714	114	617	799	185	4,5	4594
3	C_4H_4NH	615	612	770	766	155	620	763	145	6,8	3397
4	C ₅ H ₅ N	591	587	777	772	186	679	1086	410	4,5	5338
5	C ₅ H ₅ N	522	518	665	661	143	658	1728	1074	4,9	4932
6	C ₅ H ₅ N	612	608	750	746	138	677	781	108	6,6	3640
7	C ₆ H ₆	508	503	-	-	207	516	514	4	4.6	5405
		641	637	715	711	207	688	687	4	٦,0	5-105
8	C_6H_6	519	514	_	_	216	525	524	4	51	4822
0		656	652	735	731	210	688	686	2	5,1	1022

Характеристические точки кривых на рис. 2, 3 и термодинамические параметры реакционной смеся

Таблица 2

из-за высокой теплопроводности ($\lambda = 21$ Вт/(м·К)) и теплоемкости (C = 548 Дж/(кг·К)) нержавеющей стали [23], а также стабилизирующего действия термопрограмматора, который регулирует нагрев реактора уменьшением мощности нагревателя. Отметим, что выделение тепла при полном окислении топлива ($Q = n_0$ (F)· $\Delta H^{\circ}_{298} = 23,1-25,5$ кДж) в адиабатических условиях может привести к увеличению температуры реактора массой 3,6 кг на 12–13 К или температуры газа, содержащегося в реакторе, при газофазном горении на несколько тысяч градусов (табл. 2). Из-за отвода тепла от реакционной системы прирост температуры ΔT^{max} был существенно меньше величины ΔT_{ad} .

Как видно из табл. 2 и рис. 2, максимальный прирост температуры ΔT^{max} при окислении пиррола и пиридина в опытах 2, 4, 6 варьируется от 108 до 410 K и не отражается на зависимостях $P(T_{\text{out}})$. Это означает, что топливо окислялось непосредственно на поверхности Pt-Rh/Pt термопары. Поскольку платина и платинородиевый сплав обладают близкими свойствами [24, 25], окисление протекало как на поверхности открытого участка проводников, так и на поверхности спая. Оценка показывает, что тепловые затраты на нагрев открытого конца термопары с диаметром и длиной проводников соответственно 0,35 и 12 мм и диаметром спая 1,0 мм на величину $\Delta T^{\text{max}} = 185$ K составляют 1,1 Дж и соответствуют тепловыделению при окислении \approx 0,5 мкмоль пиррола при реакции (3). При оценке плотность и теплоемкость платины принимались равными $\rho_{\text{Pt}} = 21,45$ г/см³ и $C_{\text{Pt}} = 132$ Дж/(кг·K).

Окисление топлив непосредственно на поверхности Pt-Rh/Pt термопары может являться следствием диссоциативной адсорбции молекул кислорода, пиррола и пиридина на поверхности платины. С помощью методов термической десорбции и спектроскопии в работе [26] было показано, что при 300 К на поверхности Рt (111) происходит образование орто-пиридильного радикала, а при T > 425 К в результате диспропорционирования этого радикала на поверхности Pt(111) образуются продукты раскрытия цикла. В работах [27, 28] было установлено, что при адсорбции пиррола на поверхности Pt (111) из-за диссоциации связи N-Н происходит образование связи N-Pt и последующее раскрытие цикла. В исследовании [29] было установлено, что при адсорбции на поверхности Pt (111) молекула O₂ образует пероксид, где каждый атом кислорода связан с атомом Рt. При нагревании связь О-О разрывается, а связанный кислород сохраняется на поверхности платины. Поскольку энергия диссоциации молекулы О₂ равна 498 кДж/моль [30], а энергия диссоциации связи Pt-О уменьшается от 405 до 270 кДж/моль с увеличением степени покрытия платины кислородом [29], то окисление топлива на поверхности платины происходит с меньшей энергией активации, чем в газовой фазе. Очевидно, что снижение температуры воспламенения T_{in}^{*} при уменьшении величины $\varphi_{\rm F}$ в опытах 2 и 5 по сравнению с опытами 1 и 4 вызвано увеличением степени покрытия платины кислородом и, как следствие, ускорением окисления. Наиболее ярко этот эффект проявился при окислении пиридина в обедненной топливом смеси.

На рис. За приведены зависимости прироста температуры и давления реакционной смеси от температуры T_{out} в опыте 5. Видно, что окисление пиридина сопровождалось взрывом. Это привело не только к значительному приросту температуры реакционной смеси ($T_{in}^{max} = 1728$ и $\Delta T^{max} = 1074$ K), но и, в отличие от остальных опытов, к увеличению температуры стенки реактора. На рис. Зb показаны зависимости температуры термопар $T_1 - T_3$ и изменение мощности омического нагревателя W от заданной температура термопар T_1 , T_2 и T_3 увеличилась соответственно на 7, 10 и 3 К относительно температуры T_{out} . При увеличении температуры T_2 выше заданного значения омический нагреватель отключился (W = 0 BT), что из-за его инерционности привело к уменьшению температуры стенки реактора ниже заданного значения T_{out} (см. вкладку на рис. 3b).

Рис. 3. Зависимости прироста температуры ΔT (5) и давления P (5') реакционной смеси (a), температуры термопар $T_1 - T_3$ и мощности омического нагревателя W (b) от заданной температуры реактора T_{out} при окислении пиридина в опыте 5. На вкладке в увеличенном масштабе показана область резкого изменения температуры термопар $T_1 - T_3$.

Последующее увеличение мощности нагревателя обеспечило выход реактора на заданный температурный режим.

Исходя из того, что взрыв был кратковременным и завершился почти полным выгоранием топлива (уменьшением величины ΔT до базового уровня (рис. 3*a*)), можно предположить, что в опыте 5 имела место детонация реакционной смеси, которую инициировало возникновение ударной волны в приповерхностной области Pt-Rh/Pt термопары. Появление ударной волны могло быть вызвано высокой скоростью тепловыделения из-за значительно большей частоты столкновений активных частиц в адсорбированном слое, чем в газовой фазе. Оценка показывает, что скорость детонации *D* в опыте 5 могла достигать 2330 м/с (из-за окисления части пиридина до начала детонации величина *D* была меньше рассчитанной). Здесь скорость детонации рассчитывалась исходя из условия Чепмена–Жуге по формуле [31]

$$D = \left[2q\left(\gamma^2 - 1\right)\right]^{0,5},\tag{10}$$

где q — тепловыделение при реакции (4), отнесенное к массе веществ, заправленных в реактор; $\gamma = C_p/C_v$ — показатель адиабаты. Величины C_p и C_v для смеси $CO_2/H_2O/N_2/O_2$ при $T_{in}^{max} = 1728$ К рассчитывались с помощью справочных данных [22, 32]; количество компонентов смеси определялось в предположении полного окисления пиридина при реакции (4).

Кривая 5' (рис. 3*a*) показывает, что в момент максимального тепловыделения давление реакционной смеси увеличилось от 15,7 до 50,2 МПа. Исходя из количества компонентов, заправленных в реактор (табл. 1), в предположении полного окисления пиридина при реакции (4) с помощью уравнения состояния идеального газа легко оценить, что температуре $T_{in}^{max} = 1728$ K соответствует давление 31,3 МПа. Различие в измеренной и рассчитанной величинах давления является, по-видимому, следствием перехода энергии хаотического (теплового) движения молекул в их направленное движение в детонационной волне, которое при торможении создает избыточное давление.

Очевидно, что меньшие величины температуры воспламенения T_{in}^* и большие величины максимального прироста температуры ΔT^{max} при окислении пиридина, по сравнению с окислением пиррола ($x_D \le 47$ % мол.), являются следствием не только образования устойчивого пирролильного радикала [12], но и большей величины энергии адсорбции пиридина, чем пиррола на поверхности Pt [33].

Зависимости $\Delta T(T_{out})$, полученные при окислении пиррола в опытах 1–3 ($x_D = 40 - 62$ % мол.), имеют одинаковый вид (см. рис. 2*a* и 2*b*). Однако увеличение степени разбавления в опыте 6 (до $x_D = 58$ % мол.) привело к изменению динамики окисления пиридина, что проявилось в многочисленных кратковременных скачках температуры ΔT (рис. 2*b*), не превышающих $\Delta T^{\text{max}} = 108$ K (табл. 2). Можно предположить, что скачки температуры ΔT на кривой 6 вызваны периодическим истощением пиридина в приповерхностной области Pt-Rh/Pt термопары из-за высокой плотности водяного пара и образования устойчивых комплексов {C₅H₅N·(H₂O)_{*n*}} [34]. Другим фактором, влияющим на скорость окисления топлив в водяном паре, могла быть диссоциация молекул воды на поверхности Pt-Rh/Pt термопары. С помощью квантово-химических методов установлено [35], что в присутствии адсорбированного кислорода на поверхности платины диссоциация воды при реакции

$$H_2O + O \rightarrow OH + OH \tag{11}$$

протекает с меньшей энергией активации, чем в его отсутствие. Очевидно, что дополнительная генерация ОН-групп на поверхности Рt могла способствовать увеличению скорости окисления пиридина и пиррола. С другой стороны, увеличение плотности водяного пара, и следовательно, увеличение количества адсорбированных молекул воды на поверхности Pt может приводить к уменьшению количества адсорбированных молекул топлива и кислорода и, как следствие, снижать скорость окисления.

В отличие от пиридина и пиррола бензол в водяном паре окисляется со значительно меньшей скоростью. На это указывает увеличение времени окисления tox (табл. 2) и то, что при близких величинах тепловыделения во всех опытах (Q = 23,1-25,5 кДж) кривые 7 и 8 не перешли в положительную область величин ΔT (рис. 2*c*). Кроме того, кривые 7 и 8 характеризуются наличием двух максимумов, что свидетельствует о двухстадийном процессе аналогично окислению пропана и пропена [19, 36]. Результаты [37] показали, что при 300-500 К бензол на поверхности Pt (111) окисляется с высокой скоростью. Однако, как следует из данных [38, 39], при наличии водяного пара в реакционной системе скорость окисления бензола на поверхности Рt снижается. Авторами [38] был сделан вывод о том, что наличие адсорбированной воды (ОН-групп, см. реакцию (11)) на поверхности Pt приводит к образованию интермедиатов, окисление которых протекает с большей энергией активации. По мнению авторов [39], адсорбированная вода на поверхности Pt блокирует доступ молекул бензола к активным центрам, что способствует увеличению энергии активации процесса. В целом совокупность полученных результатов и литературных данных позволяют заключить, что наличие водяного пара в реакционной системе ингибирует окисление бензола на поверхности Pt-Rh/Pt термопары, но не препятствует (или улучшает при небольшой плотности водяного пара) окислению N-содержащих ароматических соединений. Последнее может являться следствием сравнимых величин энергии адсорбции пиррола, пиридина и воды на поверхности Pt.

Результаты масс-спектрометрического анализа газовых продуктов окисления топлив приведены в табл. 3. Видно, что наибольшая степень выгорания углерода получена при окислении пиррола, а наименьшая, как следует и из данных рис. 2c, — при окислении бензола. Состав конденсированных продуктов окисления бензола не определялся. Однако, исходя из данных [14], можно предположить, что часть бензола конвертировалась в фенол. При окислении пиридина большая доля азота переходит в N₂, чем при окислении пиррола. Отметим, что в отличие от результатов [6–8], в настоящей работе акрилонитрил, синильная и изоциановая кислоты не обнаружены в продуктах окисления пиррола и пиридина. Это может быть результатом как меньшей величины активационного барьера образования NH₃, чем HCN в присутствии воды [40], так и гидролиза цианидов в водной среде [41]. Наличие H₂, CO и CH₄ в составе продуктов является, повидимому, результатом реакций парового риформинга, водяного газа, парциального окисления углеводородов и пиролиза. Увеличение плотности воды приводит к уменьшению как доли азота, перешедшего в N₂, так и степени выгорания углерода, то есть препятствует полному выгоранию топлив.

Т	а	6	л	и	ц	а	3
---	---	---	---	---	---	---	---

Опыт	Топливо			α _C ,	$\beta_{\rm N}$,					
N₂	Топливо	H_2	CH_4	CO ₂	CO	O ₂	N ₂	N ₂ O	мол. %	мол. %
1	C ₄ H ₄ NH	0,08	0,07	39,68	0,02	3,17	3,97	0,59	98,2	78,6
2	C_4H_4NH	0	0,06	39,71	0,15	7,13	4,19	0,79	98,3	83,0
3	C ₄ H ₄ NH	0,03	0,06	39,71	0,03	2,72	3,51	1,00	98,3	69,5
4	C ₅ H ₅ N	0,08	0,10	44,09	0,13	3,16	3,30	0,88	89,1	66,7
5	C ₅ H ₅ N	0,07	0,07	46,61	0,17	17,14	4,11	0,31	94,2	83,0
6	C ₅ H ₅ N	0,22	0,22	40,01	0,01	4,69	2,31	0,18	80,8	46,7
7	C_6H_6	0	0,04	37,22	0,28	15,66	-	-	79,5	-
8	C_6H_6	0,10	0,06	35,70	0,06	3,86	-	_	76,3	-

Результаты масс-спектрометрического анализа газовых продуктов

Заключение

В представленной работе впервые проведено сравнительное исследование особенностей горения бензола, пиридина и пиррола в водяном паре в условиях высокой плотности компонентов реакционной смеси. Методика основана на измерении временных зависимостей температуры реакционной смеси с помощью Pt-Rh/Pt термопары, введенной в центр реакционного объема, при равномерном медленном нагреве реактора. Показано, что окисление бензола в водяном паре протекает в две стадии и характеризуется низкой степенью выгорания углерода. Динамика окисления пиридина зависит от коэффициента избытка топлива и плотности водяного пара; при небольшой плотности водяного пара в обедненной топливом смеси горение пиридина сопровождается детонацией, инициируемой в приповерхностной области Pt-Rh/Pt термопары. Изменение коэффициента избытка топлива и/или плотности воды не приводит к существенному изменению динамики и механизмов окисления пиррола. Наблюдаемые особенности обусловлены различием структуры молекул топлив и их адсорбции на поверхности платины в присутствии водяного пара.

Авторы благодарят М.Я. Сокола за помощь в проведении экспериментов.

Список обозначений

C — теплоемкость, Дж/К,	<i>P</i> — давление, МПа,
c — концентрация, моль/дм ³ ,	Q — тепловыделение, кДж,
D — скорость детонации, м/с,	q — удельное тепловыделение, кДж/г,
E — энергия связи, кДж/моль,	<i>T</i> — температура, K,
<i>i</i> — количество атомов углерода,	<i>t</i> — время, мин,
<i>H</i> — энтальпия, кДж/моль,	W— мощность, Вт,
<i>k</i> — стехиометрический коэффициент,	<i>х</i> — степень разбавления, % мол.
n — количество вещества, ммоль,	
Гре	еческие символы
α — степень выгорания. % мол	λ — теплопроводность, Вт/м·К,

- β доля азота, перешедшего в N₂, % мол.,
- γ показатель адиабаты,

* — параметр воспламенения,

 Δ — прирост,

Надстрочные индексы

f — окончание окисления.

 ρ — плотность, г/см³, τ — время пребывания, с,

ф — коэффициент избытка топлива.

Подстрочные индексы

ad — адиабатический,	N — азот,
С — углерод,	out — внешняя термопара,
D — разбавитель,	ох — окисление,
F — топливо,	р — изобарный,
in — внутренняя термопара,	v — изохорный.
<i>i</i> — номер термопары	

і — номер термопары,

Список литературы

- 1. Mylapilli S.V.P., Reddy S.N. Sub and supercritical water oxidation of pharmaceutical wastewater // J. Envir. Chem. Eng. 2019. Vol. 7, Iss. 3. P. 103–165.
- Zhang S., Zhang Z., Zhao R., Gu J., Liu J., Örmeci B., Zhang J. A review of challenges and recent progress in supercritical water oxidation of wastewater // Chem. Eng. Commun. 2017. Vol. 204, Iss. 3. P. 265–282.
- 3. Федяева О.Н., Востриков А.А. Утилизация токсичных органических веществ в сверхкритической воде // Сверхкритические флюиды: теория и практика. 2012. Т. 7, № 1. С. 64–88.
- Marrone P.A. Supercritical water oxidation current status of full-scale commercial activity for waste destruction // J. Supercrit. Fluids. 2013. Vol. 79. P. 283–288.
- Jiang Z., Li Y., Wang S., Gui C., Yang C., Li J. Review on mechanism and kinetics for supercritical water oxidation processes // Appl. Sci. 2020. Vol. 10, No. 14. P. 4937-1–4937-42.
- 6. Lumberas M., Alzueta M.U., Millera A., Bilbao R. A study of pyrrole oxidation under flow reaction conditions // Combust. Sci. Tech. 2001. Vol. 172. P. 123–139.

- Tian Z., Li Y., Zhang T., Zhu A., Cui Z., Qi F. An experimental study of low-pressure premixed pyrrole/oxygen/argon flames with tunable synchrotron photoionization // Combust. Flame 2007. Vol. 151. P. 347–365.
- Wu L.-N., Tian Z.-Y., Weng J.-J., Yu D., Liu Y.-X., Tian D.-X., Cao C.-C., Zou J.-B., Zhang Y., Yang J.-Z. Experimental and kinetic study on the low-temperature oxidation of pyridine as a representative of fuel-N compounds // Combust. Flame. 2019. Vol. 202. P. 394–404.
- Semenov N.N. Some problem relating to the chain reactions and to the theory of combustion // Nobel Lecture. December 11, 1956. 28 p. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1956/semenov-lecture.pdf.
- Merchant S.S., Goldsmith C.F., Vandeputte A.G., Burke M.P., Klippenstein S.J., Green W.H. Understanding low-temperature first-stage ignition delay: propane // Combust. Flame. 2015. Vol. 162. P. 3658–3673.
- Barckholtz C., Barckholtz T., Hadad C.M. C-H and N-H bond dissociation energies of small aromatic hydrocarbons // J. Am. Chem. Soc. 1999. Vol. 121, No. 3. P. 491–500.
- MacNamara J.P., Simmie J.M. The high temperature oxidation of pyrrole and pyridine; ignition delay times measured behind reflected shock waves // Combust. Flame. 2003. Vol. 133. P. 231–239.
- DiNaro J.L., Howard J.B., Green W.H., Tester J.W., Bozzel J.W. Elementary reaction mechanism for benzene oxidation in supercritical water // J. Phys. Chem. A. 2000. Vol. 104. P. 10576–10586.
- DiNaro J.L., Tester J.W., Howard J.B., Bozzel J.W. Experimental measurement of benzene oxidation in supercritical water // AIChE J. 2000. Vol. 46. P. 2274–2284.
- 15. Востриков А.А., Псаров С.А. Горение бензола в сверхкритической воде // Письма в ЖТФ. 2004. Т. 30, № 3. С. 24–30.
- Crain N., Tebbal S., Li L., Gloyna E.F. Kinetics and reaction pathways of pyridine oxidation in supercritical water // Ind. Eng. Chem. Res. 1993. Vol. 32. P. 2259–2268.
- Aki S., Abraham M.A. Catalytic supercritical water oxidation of pyridine: Kinetics and mass transfer // Chem. Eng. Sci. 1999. Vol. 54. P. 3533–3542.
- Fedyaeva O.N., Artamonov D.O., Vostrikov A.A. Heterogeneous-homogeneous oxidation of pyrrole in water vapor at elevated pressure // Combust. Flame. 2019. Vol. 210. P. 182–192.
- 19. Федяева О.Н., Артамонов Д.О., Сокол М.Я., Востриков А.А. Горение пропана в среде аргона, диоксида углерода и водяного пара при повышенном давлении // Теплофизика и аэромеханика. 2019. Т. 26, № 4. С. 643–654.
- NIST Chemistry WebBook. NIST Standard Reference Database Number 69 / Eds. P.J. Linstrom, W.G. Mallard National Institute of Standards and Technology, Gaithersburg MD, 20899, 2018. https://webbook.nist.gov/chemistry.
- 21. Федяева О.Н., Востриков А.А., Шишкин А.В., Сокол М.Я., Борисова Л.С., Каширцев В.А. Конверсия бурого угля в суб- и сверхкритической воде при периодическом сбросе давления // Сверхкритические флюиды: теория и практика. 2011. Т. 6, № 4. С. 60–76.
- 22. Lemmon E.W., McLinden M.O., Freid D.G. Thermophysical properties of fluid systems. NIST chemistry Web-Book, NIST standard reference database No 69 / Eds. P.J. Linstrom, W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD2018: 20899. http://webbook.nist.gov/chemistry/fluid.
- 23. Гува А.Я. Краткий теплофизический справочник. Новосибирск: Сибвузиздат, 2002. 300 с.
- 24. Grander P., Lecomte J.J., Leclercq L., Leclercq G. Kinetics of the CO + O₂ reaction over three-way Pt-Rh catalysts // Appl. Catalysis A: General. 2001. Vol. 218. P. 257–267.
- 25. Owczarek S., Lambeets S.V., Bryl R., Barro C., Croquet O., Markowski L., de Bocarme T.V. Oxygen adsorption, subsurface oxygen layer formation and reaction with hydrogen on surfaces of a Pt-Rh alloy nanocrystal // Topic in Catalysis. 2020. Vol. 63. P. 1522–1531.
- 26. Grassian V.H., Muetterties E.L. Electron energy loss and thermal desorption spectroscopy of pyridine adsorbed on Pt (111) // J. Phys. Chem. 1986. Vol. 90. P. 5900–5907.
- 27. Tourillon G., Raaen S., Skotheim T.A., Sagurton M., Garrett R., Williams G.P. A near edge X-ray adsorption fine structure study of the adsorption of pyrrole and N-methylpyrrole on Pt (111): orientation and dissociation of the adsorbed molecules // Surf. Sci. 1987. Vol. 184. P. L345–L354.
- 28. Kliewer C.J., Bieri M., Somorjai G.A. Pyrrole hydrogenation over Rh (111) and Pt (111) single crystal surface and hydrogenation promotion mediated by 1-methylpyrrole: a kinetic and sum-frequency generation vibrational spectroscopy study // J. Phys. Chem. C. 2008. Vol. 112. P. 11373–11378.
- 29. Зюбин А.С., Зюбина Т.С., Добровольский Ю.А., Волохов В.М. Поведение кислорода на поверхности платины: квантово-химическое моделирование // Журн. неорганической химии. 2013. Т. 58, № 7. С. 907–911.
- 30. Лидин Р.А., Андреева Л.Л., Молочко В.А. Константы неорганических веществ: справочник. М.: Дрофа, 2006. 685 с.
- 31. Зельдович Я.Б., Компанеец А.С. Теория детонации. М.: Гостехиздат, 1955. 268 с.
- 32. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972. 720 с.
- 33. K unaseth M., Poldorn P., Junkeaw A., Meeprasert J., R ungnim C., Namuangruk S., K ungwan N., Inntam C., Jungsuttiwomg S. A DFT study of volatile organic compounds adsorption on transition metal deposited graphene // Appl. Surf. Sci. 2017. Vol. 396. P. 1712–1718.
- 34. Choudhary A., Chandra A. Spatially resolved structure and dynamics of the hydration shell of pyridine in suband supercritical water // J. Molecular Liquids. 2019. Vol. 287. P. 110881-1–110881-12.
- 35. Ranea V.A., Mola E.E. Oxygen assisted H₂O dissociation on the Pt{110}(1×2) surface from first principles // Surface Sci. 2014. Vol. 627. P. 42–48.

- 36. Fedyaeva O.N., Artamonov D.O., Vostrikov A.A. Features of propene oxidation in argon, carbon dioxide and water vapor media at a high density of reagents // J. Eng. Thermophys. 2018. Vol. 27, No 4. P. 405–414.
- 37. Marsh A.L., Gland J.L. Mechanisms of deep benzene oxidation on the Pt(111) surface using temperatureprogrammed reaction methods // Surf. Sci. 2003. Vol. 536. P. 145–154.
- **38.** Marsh A.L., Gland J.L. Effect of co-adsorbed water on deep oxidation mechanisms: temperature-programmed reactions of benzene and hydroxyl on the Pt (111) surface // Catalysis Lett. 2004. Vol. 93, No. 3–4. P. 165–170.
- Zhang M., Zhou B., Chuang K.T. Catalytic deep oxidation of volatile organic compounds over fluorinated carbon supported platinum catalysts al low temperatures // Appl. Catalysis B: Environ. 1997. Vol. 13. P. 123–130.
- 39. Liu J., Lu Q., Jiang X., Hu B., Zhang X., Dong C., Yang Y. Theoretical investigation of the formation mechanism of NH₃ and HCN during pyrrole pyrolysis: the effect of H₂O // Molecules. 2018. Vol. 23, No. 4. P. 711-1–711-11.
- 40. Oulego P., Laca A., Diaz M. Kinetic and pathways of cyanide degradation at high temperatures and pressures // Environ. Sci. Technol. 2013. Vol. 47. P. 1542–1549.

Статья поступила в редакцию 26 марта 2021 г., после доработки — 3 мая 2021 г., принята к публикации 18 мая 2021 г.