2009. Том 50, № 3 Май – июнь C. 478 – 481

УДК 532.73

ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ СТРУКТУРЫ ВОДНЫХ РАСТВОРОВ УГЛЕВОДОРОДОВ C_{12} — C_{18}

© 2009 Ю.А. Миргород*

Курский государственный университет

Статья поступила 30 июля 2008 г.

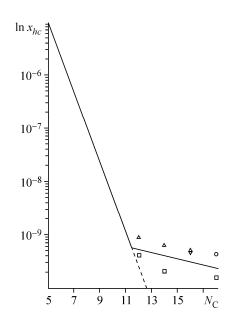
Построены термодинамические циклы, включающие инкременты $\Delta G_{\rm CH_2}^0$, $\Delta H_{\rm CH_2}^0$, $T\Delta S_{\rm CH_2}^0$ процессов растворения, испарения, гидрофобной гидратации углеводородов C_5 — C_9 и переноса из пара ($\Delta G_{\rm CH_2}^0 = -0.7~{\rm kДж\cdot moль}^{-1}$, $\Delta H_{\rm CH_2}^0 = 2.9~{\rm kДж\cdot moль}^{-1}$, $T\Delta S_{\rm CH_2}^0 = 3.6~{\rm kДж\cdot moль}^{-1}$) и воды ($\Delta G_{\rm CH_2}^0 = -1.4~{\rm kДж\cdot moль}^{-1}$, $\Delta H_{\rm CH_2}^0 = 5.8~{\rm kДж\cdot moль}^{-1}$, $T\Delta S_{\rm CH_2}^0 = 7.2~{\rm kДж\cdot moль}^{-1}$) в мицеллы углеводородов C_{12} — C_{18} . Образование бистабильных гидратированных мицелл C_{12} — C_{18} объясняется переходом между двумя состояниями порядок—беспорядок в ансамбле малых (нано) систем воды. Обсуждаются предсказываемые теорией флуктуации экстенсивных параметров малых систем и критические явления.

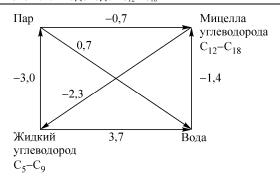
К л ю ч е в ы е с л о в а: углеводороды C_5 — C_9 и C_{12} — C_{18} , мицеллы, термодинамические циклы, гидрофобное взаимодействие, бистабильная структура.

Знания о природе растворимости и структуры водных растворов углеводородов необходимы при анализе процессов загрязнения воды, почвы [1], нефтедобычи, понимания процессов гидрофобной гидратации и гидрофобного взаимодействия. Так, до сих пор не ясно [2], обусловлено ли уменьшение энтропии в процессе гидрофобной гидратации водой или замедлением торсионных колебаний в молекулах углеводородов.

Растворимость жидких H-углеводородов в воде исследовали в работах [3—7]. Растворимость при 298 K постепенно уменьшается с увеличением молярного объема, который пропорционален числу атомов углерода в молекуле алкана. Это постепенное уменьшение растворимости с увеличением числа атомов углерода ($N_{\rm C}$) описывается уравнением [7]

$$\ln x_{hc} = -3,9069 - 0,518N_{\rm C} \tag{1}$$


для $5 \le N_{\rm C} \le 9$.


Хотя растворимость продолжает уменьшаться для $N_{\rm C} > 10$ [5], данные, представленные на рис. 1, указывают на значительный их разброс и изменение зависимости $\ln x_{hc}(N_{\rm C})$ для $N_{\rm C} > 11$. Эти изменения растворимости n-углеводородов C_{12} — C_{18} объясняют образованием мицелл. Образование таких микрофаз может значительно увеличить кажущуюся (неравновесную) растворимость [8, 9]. С другой стороны, явление может быть результатом перехода n-углеводородов C_{12} — C_{18} в "сжатые" конформации, которые уменьшают поверхность контакта алканов с водой и делают их растворимость в воде больше, чем прогнозирует уравнение (1). Такие конформационные переходы обсуждались для полимеров в плохих растворителях [10].

В данной работе с помощью метода сдвоенных термодинамических циклов энергий Гиббса процессов растворения и мицеллообразования на метиленовую группу $\Delta G_{\mathrm{CH}_2}^0$ приводятся доводы в пользу единой точки зрения на это явление.

-

^{*} E-mail: yu mirgorod@mail.ru

Рис. 1 (слева). Зависимость натурального логарифма растворимости (в мольных долях) *н*-углеводородов C_5 — C_9 и C_{12} — C_{18} от числа атомов углерода.

Прямая линия для C_5 — C_9 построена по уравнению (1). Прямая линия для C_{12} — C_{18} построена по усредненным данным [2]

Рис. 2 (справа). Термодинамические циклы инкрементов $\Delta G_{\mathrm{CH}_2}^0$ (кДж·моль⁻¹) процессов растворения, испарения и гидрофобной гидратации *н*-углеводородов C_5 — C_9 и переноса из пара воды в мицеллы C_{12} — C_{18}

Предположим, что если молекулы алканов вступают в внутримолекулярное гидрофобное взаимодействие, они переходят из цепочной в "сжатую" конформацию. Если молекулы алканов вступают в межмолекулярное гидрофобное взаимодействие, то образуются мицеллы алканов. При равновесии химические потенциалы углеводородов в растворе μ_P и в мицелле μ_M равны

$$\mu_P = \mu_M$$

или

$$\mu_P^0 + RT \ln S_{12} = \mu_M^0 + RT \ln a_M$$
.

Считая мицеллу микрофазой чистого углеводорода, можно принять ее активность равной единице. Тогда получим

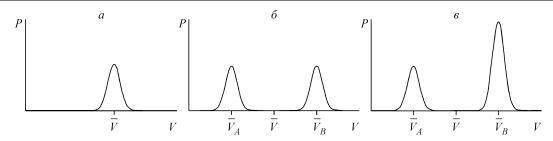
$$\mu_M^0 - \mu_P^0 = RT \ln S_{12},\tag{2}$$

где S_{12} — растворимость H-алкана C_{12} — C_{18} . По уравнению (2) и зависимости $\Delta G^0(N_{\rm C})$ были рассчитаны $\Delta G^0_{\rm CH_2}$. Для этого усредняли данные трех исследований [2] (см. рис. 1). Инкремент оказался неожиданно малым, $\Delta G^0_{\rm CH_2} = -0.7$ кДж·моль $^{-1}$. Так, $\Delta G^0_{\rm CH_2}$ мицеллообразования ПАВ равен -3.0 кДж·моль $^{-1}$, солюбилизации H-углеводородов в контактной мицелле -3.7 кДж·моль $^{-1}$, а в гидратированной -1.4 кДж·моль $^{-1}$ [11]. Отрицательный знак инкремента $\Delta G^0_{\rm CH_2}$ принят в соответствии с увеличением растворимости алканов C_{12} — C_{18} по сравнению с процессом поведения алканов C_5 — C_9 с $N_{\rm C} = 12$ —18.

Для объяснения явления обратимся к объединенным термодинамическим циклам растворения и мицеллообразования (рис. 2). Энергия Гиббса растворения жидких алканов C_5 — C_9 рассчитана по уравнению (2). Энергия Гиббса испарения алканов C_5 — C_9 получена по уравнению

$$\Delta G_g^0 = RT \ln P,$$

где P — давление насыщенного пара алкана [12]. Инкременты, представленные на рис. 2, не зависят от стандартного состояния систем и поэтому удобны для включения в термодинамические циклы. Четырехугольный цикл состоит из двух треугольных. Левый соответствует процессу растворения алканов C_5 — C_9 , а правый — процессу мицеллообразования алканов C_{12} — C_{18} . Инкременты, соответствующие испарению, растворению алканов C_5 — C_9 и мицеллообразованию алканов C_{12} — C_{18} — экспериментальные величины. Остальные рассчитаны из термодинамического цикла. Как видно из рис. 2, инкремент $\Delta G_{\text{CH}_2}^0$ растворения алканов C_5 — C_9


480 Ю.А. МИРГОРОД

 $3,7\ \text{кДж}\cdot\text{моль}^{-1}\ (\Delta H_{\text{CH}_2}^0=2,7\ \text{кДж}\cdot\text{моль}^{-1},\ T\Delta S_{\text{CH}_2}^0=-1,6\ \text{кДж}\cdot\text{моль}^{-1})$ включает инкремент испарения $3,0\ \text{кДж}\cdot\text{моль}^{-1}\ (\Delta H_{\text{CH}_2}^0=5,0\ \text{кДж}\cdot\text{моль}^{-1},\ T\Delta S_{\text{CH}_2}^0=3,0\ \text{кДж}\cdot\text{моль}^{-1})$ и гидрофобной гидратации $0,7\ \text{кДж}\cdot\text{моль}^{-1}\ (\Delta H_{\text{CH}_2}^0=-2,9\ \text{кДж}\cdot\text{моль}^{-1},\ T\Delta S_{\text{CH}_2}^0=-3,6\ \text{кДж}\cdot\text{моль}^{-1})$. Гидрофобная гидратация наступает при концентрации, которую можно получить из уравнения (1), подставив в него количество атомов углерода, равное одному из алканов C_5 — C_9 . На этой границе для углеводородов C_{12} — C_{18} (на рис. 1 показано пунктиром) начинается переход от полной гидрофобной гидратации $(0,7\ \text{кДж}\cdot\text{моль}^{-1})$ к границе полной гидрофобной дегидратации $(-0,7\ \text{кДж}\cdot\text{моль}^{-1})$, т.е. гидрофобному взаимодействию. Эту концентрацию получают из уравнения (2). Растворы алканов C_{12} — C_{18} в таком процессе выигрывают $\Delta G_{\text{CH}_2}^0=-1,4\ \text{кДж}\cdot\text{моль}^{-1}$. Это соответствует "чистому" межмолекулярному гидрофобному взаимодействию [11]. Оно сопровождается $\Delta H_{\text{CH}_2}^0=5,8\ \text{кДж}\cdot\text{моль}^{-1}$ и $T\Delta S_{\text{CH}_2}^0=7,2\ \text{кДж}\cdot\text{моль}^{-1}$, т.е. ослаблением H-связи и увеличением энтропии воды. Далее видим, что при переносе метиленовой группы из пара в мицеллу будет получен выигрыш в энергии $-0,7\ \text{кДж}\cdot\text{моль}^{-1}$, а при переносе таковой из мицеллы в чистый жидкий алкан C_5 — C_9 $-2,3\ \text{кДж}\cdot\text{моль}^{-1}$. Термодинамический цикл одинаков с термодинамическим циклом гидратационного гидрофобного взаимодействия ПАВ [11].

Термодинамический цикл не может однозначно подтвердить одну из структур углеводородов C_{12} — C_{18} : "сжатую" мономолекулярную конформацию или ассоциат из молекул углеводородов, разделенных молекулами воды с измененной структурой по сравнению с гидрофобной гидратацией. Выбор между этими структурами можно сделать, сравнивая энергетические барьеры внутреннего вращения в углеводородах для одной связи 12,2—18,5 кДж·моль⁻¹ [13] с инкрементом -1,4 кДж·моль⁻¹. Как видно, для сжатия молекулы углеводорода необходимы большие энергии.

Таким образом, перед образованием жидкой фазы из раствора углеводороды C_{12} — C_{18} образуют ассоциаты из молекул, разделенных молекулами воды. Для интерпретации процесса образования этих структур, обусловленных структурой воды, мы привлекаем теорию перехода между двумя состояниями в ансамбле малых систем воды [14, 15]. Малой системой является совокупность n молекул структурированной воды, окружающих молекулы углеводородов C_{12} — C_{18} . Представим ансамбль из N малых (нано) систем с "окружающими переменными" n, x, T, где T — температура. Каждая малая система в предлагаемой модели может находиться в состоянии A, когда молекулы воды структурированы с инкрементом $0.7 \text{ кДж} \cdot \text{моль}^{-1}$, или в B, когда молекулы воды деструктурированы с инкрементом $-0.7 \text{ к} \text{Дж} \cdot \text{моль}^{-1}$. Эти инкременты получаются при переносе метиленовой группы из пара углеводорода в воду и из пара в мицеллу (см. рис. 2). Как утверждает теория [14], переход порядок—беспорядок с возмущающей переменной концентрацией x обычно растянут (см. рис. 1). Там, где происходят плавные переходы, велика роль флуктуаций экстенсивных параметров, наблюдаются неустойчивости. Область перехода рассматривается как композиция двух простых состояний A и B, т.е. система бистабильна. Физическая причина, по которой промежуточное состояние малой системы из n молекул воды с двумя состояниями A и B у одной молекулы углеводорода C_{12} — C_{18} неустойчиво, заключается в том, что между молекулами воды в малой системе будет существовать поверхность раздела, которая дает избыточную поверхностную энергию Гиббса.

При концентрациях вдали от критической точки и области перехода между двумя состояниями распределение экстенсивного параметра P(V) малой системы воды имеет единственный пик около \overline{V} (рис. 3, a). Для макроскопической системы он характеризует отклонение от средней величины экстенсивного параметра. Для малых (нано) систем воды флуктуации V около \overline{V} становятся значительными. На середине перехода P(V) имеет два отдельных равных пика с одинаковыми площадями (см. рис. 3, δ). Такая концентрация в растворах алканов C_{12} — C_{18} находится посередине между границами предельной гидрофобной гидратации и дегидратации (см. рис. 1). Она не фиксируется методом растворимости. Фиксируется концентрация, при ко-

Puc. 3. Распределение экстенсивных параметров малых (нано) систем (без численных значений) особой структуры воды H-углеводородов C_{12} — C_{18} около средних величин: a — при концентрации вдали от критической точки и перехода между двумя состояниями; δ — на середине перехода между двумя состояниями порядок—беспорядок ближней структуры воды у поверхности C_{12} — C_{18} ; ϵ — вблизи появления жидкой фазы C_{12} — C_{18}

торой все малые системы воды находятся в состоянии \overline{V}_B . На рис. 3, s представлена ситуация вблизи предельного состояния \overline{V}_B .

Переход порядок—беспорядок происходит в области концентраций между спинодалью и бинодалью. Для алканов C_5 — C_9 они совпадают, а в критической точке (концентрации x_{hc}) для C_{11} они расходятся (см. рис. 1). Эта область концентрации углеводородов C_{12} — C_{18} является критической [16], а раствор может применяться в качестве эффективного растворителя в процессе экстракции. Особенность околокритического состояния вещества создает уникальные возможности для реализации путей извлечения, разделения и концентрирования.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Бродский Е.С., Савчук С.А.* // Журн. аналит. химии. 1998. **53**. С. 1238.
- 2. *Tsonopoulos C.* // Fluid Phase Equilibria. 1999. **156**. P. 21.
- 3. Baker E.G. // Science. 1959. **129**. P. 871.
- 4. Franks F. // Nature. 1966. 210. P. 87.
- 5. Sutton C., Calder J.A. // Environ. Sci. Technol. 1974. **8**. P. 654.
- 6. *Yoshida F. Yamane T.* // Biotechnol. Bioeng. 1971. **13**. P. 691.
- 7. *Shaw D.G.* Hydrocarbons with Water and Seawater: Part I. Hydrocarbons C₅ to C₇; Part II. Hydrocarbons C₈ to C₃₆, Vol. 37 and 38, IUPAC Solubility Data Series, Pergamon Press, Oxford. 1989.
- 8. Peake E., Hodgson G.W. // J. Amer. Oil Chem. Soc. 1966. 43. P. 215.
- 9. Peake E., Hodgson G.W. // Ibid. 1967. 44. P. 696.
- 10. Szleifer I., O'Toole E.M., Panagiotopoulos A.Z. // J. Chem. Phys. 1992. 97. P. 6802.
- 11. Миргород Ю.А. // Журн. структур. химии. 2008. 49. С. 920.
- 12. *Миргород Ю.А.* // Журн. общей химии. 2005. **75**. С. 36.
- 13. *Волькенштейн М.В.* Биофизика. М.: Наука, 1988.
- 14. Hill T.L. Thermodynamic of small system. V. 1. N. Y., Amsterdam: Benjamin, 1963.
- 15. *Миргород Ю.А.* // Журн. общей химии. 1994. **64**. С. 189.
- 16. *Юркин В.Г.* // Успехи химии. 1995. **64**. С. 237.