$c(t)$ и $-c(t)$ выходные. Условие (2.2) примет вид

\begin{equation}
\frac{h^3}{I_2^2} \frac{\partial^2 c}{\partial x^2} + h \frac{dc}{dt} = \frac{dc}{dt} \left(-\frac{\alpha}{\mu c \frac{dc}{dt}}, 0 \right).
\end{equation}

Решение (6.1), (6.5), (1.7) при $\sigma = \infty (f = 0)$ снова дает закон сохранения объема $h_0 c + c^2/2R = V/2$, давление определяется из (6.1) с заменой a на c. Если $\sigma < \infty$, на стенках, как показано на фгт, б, будет оставаться некоторый слой жидкости — объем жидкости в контакте $x \in (-c, c)$ будет уменьшаться. Применение кавитационного условия $\sigma = 0 (f = 1)$ в данном случае приводит к мгновенному разрыву смазочной пленки, т.е. пренебрегать поверхностным натяжением в задаче о развитии не следует.

Поступила 10 VII 1981

ЛИТЕРАТУРА

4. Капица П. Л. Гидродинамическая теория смазки при начении.— ЖТФ, 1955, т. 25, вып. 4.
6. Койн, Эрден мк. Условия разрыва смазочной пленки. Ч. 1. Теоретическая модель.— Проблемы трения и смазки, 1970, № 3.

УДК 532.522

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ИЗГИБНОЙ НЕУСТОЙЧИВОСТИ ТОНКИХ СТРУЙ КАПЕЛЬНЫХ ЖИДКОСТЕЙ

А. Л. Ярин

(Москва)

В работах [1, 2] выведена система квазидинамических уравнений тонких струй капельных жидкостей, позволяющая, в частности, исследовать процесс роста изгибных возмущений высокоскоростных струй вследствие действия окружающего воздуха. Эти уравнения решены в пределе малых возмущений, что позволяло в линейном приближении определить соответствующий инкремент [3]. В данной работе приводятся некоторые результаты численного решения квазидинамических уравнений динамики струй [1, 2] для случая конечных плоских изгибных возмущений струй шлюзованых вязких жидкостей кругового сечения.

1. Основные уравнения. Остановимся прежде всего на варианте задачи без учета силы лобового сопротивления воздуха. При этом случае бесконечной первоначальной прямолинейной струе отвечает возмущение в виде стоячих волн с растущей во времени амплитудой. Для достаточно вязкой жидкости можно пренебречь инерционными членами по сравнению с вязкими во всех уравнениях задачи, кроме проекции уравнения количества движения на нормаль к оси струи (вязкие члены в последнем уравнении малы: имеют порядок перерезывающей силы). После преобразований, подробности которых приведены в [1], представим квазидинамические уравнения неразрывности, количества движения (проекции на нормаль и касательную к оси струи), момента количества движения, а также...
Кинематические и геометрические соотношения в следующем безразмерном виде:

\[\frac{\partial \lambda a^2 \partial \nu_n}{\partial t} + \frac{\partial a^2 W}{\partial s} = 0, \]

\[\frac{\partial \lambda a^2 V_n}{\partial t} + V_n a^2 \lambda^{-1} \frac{\partial V_n}{\partial s} + \frac{\partial a^2 V_n W}{\partial s} + a^2 W V_n \lambda k = \frac{4}{Re} \left(\frac{\partial \nu_n}{\partial s} + \lambda Pk \right) - \frac{k a^2}{\lambda}, \]

\[V_n = C \int_0^{4a^2 \lambda \mu ds} + \int_0^{4a^2 \lambda \mu ds} k V_n \lambda ds, \quad C = \frac{4}{3} \int_0^{4a^2 \lambda \mu ds}, \]

\[P = 3a^2 (\lambda^{-1} V_n - k V_n), \]

\[Q_n = -a^2 \frac{\partial}{\partial s} \left(\frac{3}{\lambda} \frac{\partial V_n}{\partial s} \left(\frac{1}{\lambda \mu} \frac{\partial V_n}{\partial s} + \frac{k V_n}{\lambda} \right) - \frac{9}{2} \frac{k}{\lambda \mu} \frac{\partial V_n}{\partial s} + \frac{9}{2} k^3 V_n \lambda \mu \right), \]

\[W = V_n - V_n H_n, \quad k = (\partial^2 H/\partial s^2) \left[1 + (\partial H/\partial s^2)^{-1} \right], \]

где \(a \) — радиус струи, отнесенный к начальному значению \(a_0 \); \(t \) — время; \(s \) — параметр, отсчитываемый вдоль оси невозмущенной струи; \(V_n \) и \(V_n \) — проекции скорости на оси струи на нормаль и касательную к оси; \(H \) — отклонение оси струи от прямой; \(P \) и \(Q_n \) — величины продольной и перерезывающей сил в сечении струи; \(k \) — кривизна оси струи. Кроме того, в качестве линейного и временного масштабов взяты длина волны наиболее быстро растущего малого изгибного возмущения и характерное время его роста:

\[l = 2\pi \left(\frac{\rho u^2_0}{\mu} \right)^{1/6}, \quad T = \left(\frac{\rho u^2_0}{\mu} \right)^{1/3}, \]

а в качестве масштаба для напряжений — \(\mu/T \). Здесь \(\mu \) — коэффициент вязкости жидкости; \(\rho \) и \(\rho_0 \) — плотности жидкости и воздуха; \(U_0 \) — скорость движения невозмущенной струи. Для критериев подобия введены обозначения: \(Re = \sqrt{\mu \rho T}, \quad J = \rho U_0^2 T^2/\rho_0^2 \).

Начальное возмущение задавалось в виде

\[V_n = V_n = 0, \quad a = 1, \quad H = H_0 \sin 2\pi s, \quad H_0 = (5 \cdot 10^{-4} - 5 \cdot 10^{-3}) \]

при граничных условиях

\[a(s) = a(-s), \quad V_n = V_n = H = 0, \quad s = 0, \]

\[a(1/4 + s) = a(1/4 - s), \quad V_n(1/4 + s) = V_n(1/4 - s), \]

\[H(1/4 + s) = H(1/4 - s), \quad V_n = 0, \quad s = 1/4. \]

В данном случае достаточно рассматривать лишь четвертую длины волн возмущения.

При наличии силы лобового сопротивления воздуха (учитываемой с помощью коэффициента сопротивления цилиндра при поперечном обтекании, см. [1]) и достаточно большой вязкости жидкости движение струи может быть отчетливо разделено на два составляющие разные природы. Одна из них — это снос возмущений струи как целого в направлении, противоположном движению струи, вторая — деформация струи на фоне такого сноса под действием подъемной составляющей аэродинамической силы [1, 3]. Если струя имеет некоторое начальное искривление, так что сила лобового сопротивления отлична от нуля, то, как легко убедиться, споспешное инерционное движение остается даже в пределе бесконечно большой вязкости, когда изгибные деформации становятся бесконечно медленными и инерционными эффектами при их развитии можно пренебречь. Ось струи вследствие сноса может приобретать достаточно сложную форму, возникают «перехлесты», поэтому приходится откладывать
от указанной выше параметризации оси струи в пользу лагранжевой параметризации.

Пусть начальное возмущение оси струи задается синусоидой \(H = H_0 \sin 2\pi \xi \), где \(\xi \) — декартова координата, отсчитываемая вдоль оси невозвужденной струи (изгиб происходит в плоскости \(\xi \eta \)). Тогда значение координаты \(\xi \) для данной жидкой частицы в начальный момент времени будем считать ее лагранжевым параметром \(s \). Для такой параметризации в кинематических соотношениях работ [1, 2] надо полагать \(ds/dt = 0 \).

Сохраняющиеся ранее масштабы и по-прежнему оставляя инерциальные члены только в проекции уравнения количества движения на нормаль к оси струи, получаем после ряда преобразований (см. в [1]) квазиномп- мерное уравнения струи в виде

\[
a^2 = \lambda_0 / \lambda, \quad \lambda = (\xi_0^2 + H_0^2)^{1/2}, \quad \lambda_0 = 1 + (2\pi H_0 \cos 2\pi s)^{1/2}, \quad \frac{\partial \Sigma_{\xi}}{\partial t} + V_\xi \left(\frac{\partial \Sigma_{\xi}}{\partial s} + k \Sigma_{\eta} \right) = \frac{1}{\rho_0} \left(\frac{1}{\lambda_0} \frac{\partial \Sigma_{\eta}}{\partial s} + k \Sigma_{\eta} \right) - J F(s),
\]

\[
\Sigma_{\eta} = 3 \left(\lambda_0^{-1} V_{\xi, \eta} - k \Sigma_{\eta} \right),
\]

\[
Q_n = -\frac{a_0^2}{\rho_0 a^{2} \Sigma_{\eta}} \frac{\partial \Sigma_{\eta}}{\partial s} \left[\frac{3}{\lambda} \frac{\partial \Sigma_{\eta}}{\partial s} + k \Sigma_{\eta} \right] - \frac{9}{2} k \frac{\partial \Sigma_{\eta}}{\partial s} + \frac{9}{2} k \Sigma_{\xi} V_{\xi, \eta},
\]

\[
\frac{\partial \Sigma_{\xi}}{\partial t} = V_{\xi} \Sigma_{\eta} - V_{\xi} \Sigma_{\xi} - \frac{\partial \Sigma_{\xi}}{\partial s} = V_{\xi} \Sigma_{\xi} - V_{\xi} \Sigma_{\xi},
\]

\[
\tau_{\xi} = [1 + (H_0 / \xi_0^2)^{1/2}]^{-1/2}, \quad \tau_{\eta} = -[1 + (H_0 / \xi_0^2)^{1/2}]^{-1/2},
\]

\[
\tau_{\xi} = -\tau_{\eta}, \quad \tau_{\xi} = \tau_{\eta}, \quad V_{\xi} = V_{\tau} = C \int_0^{1/2} ds + \int_0^{1/2} k \Sigma_{\xi} ds,
\]

\[
C = -\int_0^{1/2} k \Sigma_{\xi} ds \int_0^{1/2} \lambda_0 a^2 ds,
\]

\[
V_{\tau} = \begin{cases} \Phi - C \int_0^{1/2} \lambda_0 \tau_{\xi} \int_0^{1/2} \lambda_0 a^2 ds \int_0^{1/2} k \Sigma_{\xi} ds \int_0^{1/2} \lambda_0 \tau_{\xi} \int_0^{1/2} k \Sigma_{\xi} ds \int_0^{1/2} \lambda_0 \tau_{\xi} ds, \\
- \int_0^{1/2} \lambda_0 \tau_{\xi} \int_0^{1/2} k \Sigma_{\xi} ds \int_0^{1/2} \lambda_0 \tau_{\xi} ds,
\end{cases}
\]

\[
\frac{\partial \Phi}{\partial t} = -J \int_0^{1/2} \lambda_0 \tau_{\xi} F(s) ds, \quad t = 0, \quad \Phi = 0,
\]

\[
k V_n(s) = -V_n(s + 1/2), \quad H(s) = -H(s + 1/2)
\]

(последнее условие, в частности, выполняется вследствие выбора начального возмущения оси струи в виде синусоиды). Эти условия будут также выполняться и для любого момента времени. В расчетах считалось, что \[V_n = V_{\tau} = 0, \quad a = 1 \] при \(t = 0 \), следствием чего было начальное условие

\[
\Phi = \int_0^{1/2} \lambda_0 \left(V_{\tau} \tau_{\xi} + V_{\eta} \tau_{\xi} \right) ds \text{ в } (1.4).
\]

Использовавшиеся в расчетах граничные условия (1.3), (1.5) обеспечивали периодическое продолжение решения, отвечающего одной дли-
не волны возмущения на всю струю. В результате исследовалась так называемая временная неустойчивость струи в системе отсчета, связанной с невозвышенной струей.

Отметим, что при изгибе струй высоковязких жидкостей поверхностное натяжение несущественно, поэтому им всюду пренебрегали.

2. Результаты расчетов. Численная реализация систем уравнений (1.1), (1.4) осуществлялась с помощью явной конечно-разностной схемы, спектр которой для малых возмущений хорошо воспроизводил спектр линейизированной дифференциальной задачи. Отметим, что при формальном исследовании конечно-разностной схемы оказывается, что она имеет растущие со временем решения, что вовсе не указывает на ее непригодность, а лишь отображает естественную неустойчивость исследуемого физического явления. Детали, относящиеся к конечно-разностному методу, приведены в [1, 4].

В расчетах исследовалось развитие изгибных возмущений струй весьма вязких ньютоновских жидкостей \((\mu = 10^{-10} \text{ Па}, \rho = 1 \text{ г/см}^3, \alpha_0 = 10^{-3} \text{ см}^2) \), движущихся в «воздухе» \((\rho_t = 10^{-3} \text{ г/см}^3) \) со скоростью \(U_0 = 10^3 \text{ см/с} \). Данные, полученные без учета силы лобового сопротивления воздуха, показывают, что малое начальное возмущение струи вида (1.2) с \(H_0 = 5 \cdot 10^{-4} \) быстро становится самосогласованным и нарастает со скоростью, предсказываемой линейной теорией [3]. Об этом свидетельствует сравнение на фиг. 1 наклонов линейных участков кривых \(f (\mu = 10 \text{ П}) \) и \(f (\mu = 100 \text{ П}) \) с прямой 2, отвечающей линейной теории [3]. При дальнейшем росте амплитуды возмущения его гармоническая форма исчезает, а скорость роста замедляется. Последнее происходит под действием взаимных напряжений, обусловленных нелинейным эффектом — уменьшением оси струи при изгибе. Здесь и далее данные на фигурах представлены в безразмерных величинах; в случае \(\mu = 10 \text{ П} \) масштабы равны: \(T = 0,0047 \), \(l = 0,943 \text{ см} \), а в случае \(\mu = 100 \text{ П} \) \(T = 0,01 \), \(l = 2,02 \text{ см} \). Подчеркнем, что здесь приводятся данные, полученные для возмущения с единой волны, которой отвечает наибольший интенсив на линейной стадии роста.

Если в расчетах без учета силы лобового сопротивления воздуха изгибные возмущения представляют собой систему стоячих по отношению к струе волн с растущей со временем амплитудой, то наличие сопротивления приводит к сносу возмущений набегающим потоком вдоль струи вплоть до их опондирования. На фиг. 2 (\(\mu = 10 \text{ П} \)) и 3 (\(\mu = 100 \text{ П} \)) представлен вид отрезка струи, соответствующего одной длине возмущения, в различные моменты времени, которые указаны цифрой у каждой из кривых. Данные, представленные на фиг. 2, показывают, что скорость сноса возмущения вдоль струи составляет приблизительно 1,5% скорости движения невозвышенной струи \(U_0 \). Фактически в этом случае возмущения также представляют собой стоячую волну, несмотря на наличие силы лобового сопротивления воздуха. Весьма быстро (\(t = 7 \) ось струи приобретает форму уступа, в результате чего возникает «перехлест». За это время возмущение сносится потоком воздуха приблизительно на 0,47 см,
а струи пролетает 33 см. Увеличение вязкости жидкости при сохранении неизменными остальных параметров приводит к росту расстояния, на которое волна возмущения распространяется вдоль струи до опрокидывания (см. фиг. 3). Форма возмущения большую часть времени до опрокидывания слабо зависит от лобового сопротивления и определяется в основном «подъемной» составляющей аэродинамической силы. Это естественно, так как сила лобового сопротивления квадратична по амплитуде возмущения и, следовательно, существенна только для достаточно больших возмущений.

Даже на поздних стадиях деформирования, когда величина амплитуды возмущения приближается к длине его волн, не происходит разрыва струи. Это иллюстрируется фиг. 4, показывающей вид отрезка струи жидкости с μ = 101 на протяжении одной длины волны возмущения в момент опрокидывания (соответствует t = 7, фиг. 2). Изгиб сопровождается практически синхронным утоньшением струи по всей ее длине. Поэтому вопрос о нарушении симметрии струи в результате роста изгибных возмущений остается открытым. Немногочисленные экспериментальные данные [5—7] показывают, что разрушение струи происходит после развития изгибных возмущений достаточно большой амплитуды и рассматриваемый механизм выходит за рамки квазидерновских процессов. Разрушение струй происходит, на видимому, до того, как начинает складываться стабилизирующее влияние вязких напряжений, связанных с удлинением оси при изгибе. Поэтому для вычисления скорости роста изгибных возмущений, ведущих к разрушению струи, можно с довольно хорошей точностью пользоваться результатами линейной теории [3], о чем свидетельствует сравнение их с данными численных расчетов.

Поступила 27 V 1981

ЛИТЕРАТУРА

2. Енгов В. М., Яркин А. Л. Уравнения динамики струй капельной жидкости.— Изв. АН СССР. МЖТ, 1980, № 5.
НЕСТАЦИОНАРНЫЙ КРИТИЧЕСКИЙ СЛОЙ И НЕЛИНЕЙНАЯ СТАДИЯ НЕУСТОЙЧИВОСТИ В ПЛОСКОМ ТЕЧЕНИИ ПУАЗЕЙЯ

В. П. Рутов

(Германий)

Одним из перспективных направлений в нелинейной теории неустойчивости сдвиговых течений, связанных с исследованием критического слоя (КС) [1—6], является решение нестационарных процессов, предшествующих основной практической задаче, - началу упрощающих ограничений (удар). Числами характеристика, описывающая переход от линейного непрерывного КС к малым нелинейному по мере нарастания амплитуды волны.

Ниже для исследования нелинейной стадии неустойчивости в плоском течении Пуазейля использует подход, аналогичный предложенному в [6] для ветровой неустойчивости. Рассматривается развитие длинных волн, которые на плоскости \((\alpha, \varepsilon)\) (\(\alpha\) — волновое число, \(\varepsilon\) — число Рейнольдса) изображаются точками в окрестности верхней ветви нейтральной ветви линейной теории. Для таких волн указывается возможным независимым рассмотрения КС и взаимных областей волн и стенка канала. На основе анализа нестационарного КС получены уравнения, описывающие развитие волн во времени. Прослеживается переход от линейного непрерывного КС к сильно-нелинейному по мере нарастания амплитуды волны.

Как известно, проблемы устойчивости систем с гидродинамическими потоками во многом аналогичны тем, что возникают при анализе взаимодействия волна — среда в плазме \([7—9]\). В данной работе мы используем плазменную-гидродинамическую аналогию для определения энергии волны в течении Пуазейля, позволяющую интерпретировать полученные результаты с позиций общей теории волн.

1. Исходные соотношения. Запишем уравнения для вязкой несяжимаемой жидкости в виде [10]

\[
\begin{align*}
\frac{\partial \zeta}{\partial t} + u\frac{\partial \zeta}{\partial x} + v\frac{\partial \zeta}{\partial y} &= \nu \Delta \zeta, \\
\Delta \Psi &= -\zeta,
\end{align*}
\]

где \(\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\); \(\zeta\) — завихренность течения; \(\Psi\) — функция тока, введенная соотношениями \(u = \frac{\partial \psi}{\partial y}\), \(v = -\frac{\partial \psi}{\partial x}\); \(\nu = 1/R \ll 1\) — обратное число Рейнольдса (все переменные предполагаются приведенными к безразмерной форме). Полагая

\[
\Psi = \int U(y) dy + \psi,
\]

где \(U(y) > 0\) — профиль скорости в стационарном течении Пуазейля между стенками \(y = 0\) и \(y = 2\), получим следующее уравнение для \(\psi\):

\[
\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x}\right) \Delta \psi - U \frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial y} = \frac{\partial \psi}{\partial x} \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y} \frac{\partial \psi}{\partial y} + \nu \Delta^2 \psi,
\]

(штрихи означают производные по \(y\)). Рассматриваем периодические по \(x\) волны, будем обозначать переменной с индексом \(n\) \((n = 1, 2...)\) комплексные амплитуды фурье-гармоник: \(\psi_n(y, t) = \psi \exp \left(-i\pi \xi_0\right)\) и т. п., где \(\xi = x - ct\), \(c\) — фазовая скорость волны, \(\xi_0\) — среднее по периоду. В линейной приближении профиль \(\psi(y)\) нейтральной синусоидальной волны в идеальной жидкости удовлетворяет уравнению Рейля [10]. Профиль завихренности в такой волне можно представить в виде

\[
\zeta_0 = \left(U'/(U - c)\right) \psi_1,
\]