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В работе представлена симметрическая гиперболическая термодинамически согласованная модель
насыщенной пористой среды для случая конечных деформаций и ее линеаризация для описания сей-
смических волновых полей малой амплитуды в пористых средах, насыщенных жидкостью. Модель поз-
воляет описывать волновые процессы для разных фазовых состояний насыщающей жидкости при ее
переходе из твердого состояния в жидкое, например при оттаивании вечной мерзлоты и разложении
газогидратов под действием температуры. Для численного решения данной модели разработан метод
конечных разностей на сдвинутых сетках. С его помощью проведены тестовые расчеты для модели
среды, содержащей слой газогидрата внутри однородной упругой среды. Исследование показало, что
характеристики волновых полей в насыщенных пористых средах значительно зависят от пористости,
которая меняется при изменении температуры.
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The paper presents a Symmetric Hyperbolic Thermodynamically Compatible model of a saturated porous
medium for the case of finite deformations and its linearization for description of small amplitude seismic wave
fields in porous media saturated with fluid. The model allows us to describe wave processes for the different
phase states of the saturating fluid during its transition from solid to liquid state, for example during thawing
of permafrost and decomposition of gas hydrates under the influence of temperature. To numerically solve the
governing equations of the model, a finite difference method on staggered grids has been developed and used
to perform test calculations for the model of a medium containing a layer of gas hydrate in a homogeneous
elastic medium. The study shows that the characteristics of the wave fields in saturated porous media depend
significantly on a porosity which varies with temperature.
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1. Введение

Моделирование волновых процессов в пористых средах представляет интерес для
решения многих практических задач прикладной геофизики. Особенно актуальным это
направление исследований становится в связи с развитием цифровых технологий для
двойников геологических объектов.

В последние годы растет интерес к разработке методов поиска и сейсмического мони-
торинга эволюции природных скоплений газовых гидратов. Эти исследования важны для
характеризации изменения физических свойств природных месторождений газогидратов
и их эффективного освоения. Сейсмический мониторинг основан на анализе волновых
полей, их распространения и отражения в геологических формациях, содержащих место-
рождения газогидратов, которые с точки зрения механики сплошных сред представляют
собой сложную геологическую деформируемую среду. Изменчивость волновых полей в
ответ на внешние условия можно использовать для оценки изменений в месторождениях
и прогнозирования критических событий. По мере повышения температуры газогидраты
начинают разлагаться, образуя пористую структуру. Для описания сложного строения
такой среды под воздействием температуры необходима математическая модель дефор-
мируемого пористого материала, насыщенного многофазной смесью жидкости и газа.

В качестве математической модели, описывающей изучаемые волновые процессы, вы-
брана симметрическая гиперболическая термодинамически согласованная (СГТС) мо-
дель, описанная в [1–4]. Этот выбор обусловлен ее гибкостью, допускающей обобщения на
случай многофазной насыщающей жидкости и конечных деформаций скелета, возмож-
ностью учета фазовых превращений и т. д. Отметим, что использование общепринятой
модели Био для моделирования волн в пористых средах [5, 6] кажется проблематичным
из-за трудностей, возникающих при попытке обобщить ее для описания указанных вы-
ше явлений. Теория СГТС-систем законов сохранения [7–9] в применении к моделирова-
нию многофазных сред позволяет построить математически корректную модель течения
многофазной сжимаемой смеси в деформируемом пористом скелете, удовлетворяющую
законам неравновесной термодинамики [1–4]. Отметим, что в случае малых деформаций
СГТС-модель пористой среды, насыщенной сжимаемой жидкостью, в некотором интер-
вале пористости качественно дает те же результаты при описании волновых полей, что
и модель Био [1]. Однако модель Био дает некорректные значения скоростей волн при
пористостях, близких к предельным значениям 0 или 1.

Отличительной особенностью волновых процессов в пористых средах является про-
цесс поглощения сейсмической энергии при изменении пористости. Такие процессы мо-
гут происходить в геологической среде под воздействием температуры, что характерно,
например, для разложения газогидратов и деградации вечной мерзлоты. Процесс за-
тухания сейсмических волн в пористых средах — сложное явление, на которое влияют
различные факторы, такие как структура среды, свойства флюида и упругого скеле-
та, температура, давление, волновые характеристики сейсмической волны и другие. В
частности, основными факторами, приводящими к затуханию сейсмической энергии в
пороупругой среде, являются внутреннее межфазное трение и релаксация сдвиговых на-
пряжений. Для описания поглощения сейсмической энергии в среде используются раз-
личные математические модели, в частности широко распространенная модель обобщен-
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ного стандартного линейного твердого тела (Generalized Standard Linear Solid, GSLS) [10],
которая учитывает как упругие, так и вязкие свойства среды.

Для оценки поглощения энергии сейсмических волн, распространяющихся через сре-
ду, используется коэффициент добротности или Q-фактор, который определяется как
отношение энергии, накопленной в системе, к энергии, рассеянной в ней: Q = 2π(E/δE),
где (E/δE) — доля потери энергии за цикл. Более высокие значения Q указывают на
меньшие потери энергии. Предположение о постоянстве сейсмического Q-фактора яв-
ляется фундаментальным для сейсмических исследований. Это предположение подразу-
мевает, что Q-фактор остается постоянным во всем спектре сейсмических частот. Для
того чтобы убедиться, что наша модель также обеспечивает постоянство Q-фактора в
сейсмическом диапазоне частот, мы провели серию численных экспериментов.

Статья организована следующим образом. В пункте 2 сформулированы общие урав-
нения СГТС-модели пористой среды для случая конечных деформаций и их линеаризо-
ванная форма, применимая для случая малых деформаций при распространении волн.
В п. 3 приведено краткое описание используемой конечно-разностной схемы на сдвину-
тых сетках, а в п. 4 представлены результаты численного моделирования сейсмических
волновых полей и особенности их поведения при изменении температуры/пористости
газогидратов.

2. Симметричная гиперболическая термодинамически
согласованная модель деформируемой
флюидонасыщенной пористой среды

2.1. Общая система определяющих уравнений процессов
в деформируемой насыщенной пористой среде

Рассмотрим деформируемую пористую среду, насыщенную сжимаемой жидкостью,
как двухфазную смесь. Ограничиваясь приближением одной энтропии [1], которое допу-
стимо при малых изменениях температур фаз, определяющие уравнения СГТС-модели
в случае конечных деформаций имеют вид
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Здесь (1а) — полный закон сохранения импульса для всей пористой среды, (1б) — уравне-
ние эволюции дисторсии (обратной матрицы градиента упругой деформации),
(1в) — полный закон сохранения массы всей среды, (1г) — закон сохранения массы насы-
щающей жидкости, (1д) — уравнение баланса относительной скорости wk, (1е) — урав-
нение баланса объемной доли жидкости, (1ж) — закон возрастания энтропии. Исполь-
зуются следующие переменные состояния: α1 — объемная доля насыщающей жидкости
(α2 = 1 − α1 — объемная доля деформируемого скелета), ρ1, ρ2 — массовые плотно-
сти жидкости и скелета соответственно, ρ = α1ρ1 + α2ρ2 — массовая плотность смеси,
c1 = α1ρ1/ρ — массовая доля жидкости (c2 = 1− c1 = α2ρ2/ρ — массовая доля скелета),
vk = c1v

k
1 +c2v

k
2 — скорость смеси, vk1 , vk2 — скорости жидкости и скелета соответственно,

wk = vk1 − vk2 — относительная скорость, s — энтропия смеси.
Основным замыкающим соотношением для системы (1) является обобщенная внут-

ренняя энергия E, которая имеет вид

E = E1(c1, |w|) + E2(α1, c1, ρ, s) + E3(c1, ρ, s, Aik). (2)

Здесь кинетическая энергия относительного движения E1 определяется как

E1(c1, |w|) =
1

2
c1(1− c1)ρwjwj . (3)

Далее энергия объемной деформации E2 определяется как

E2(α1, c1, ρ, s) = c1e1(ρ1, s) + c2e2(ρ2, s) = c1e1

(
ρc1
α1

, s

)
+ c2e2

(
ρc2
α2

, s

)
. (4)

И, наконец, энергия сдвига E3 зависит от искажения всего элемента смеси материала
скелета и насыщающей жидкости и определяется как

E3 =
1

8
c2c

2
s

(
tr(g2)− 3

)
, (5)

где cs — скорость звука сдвига твердого скелета, а g — нормированный тензор деформа-
ции Фингера: g = G(det G)−1/3, G = A>A.

В представленной системе имеются три диссипативных источника, соответствующих
релаксации напряжений сдвига (1б), релаксации относительной скорости (1д) и релак-
сации давления фаз к общему значению давления (1е). В уравнении энтропии имеется
источниковый член производства энтропии, который описывает ее рост за счет описан-
ных выше релаксационных процессов. Диссипативные члены пропорциональны термо-
динамическим силам:

ψik = EAik
, λk = Ewk

, ϕ = Eα1 , (6)

а параметры θ, θ1, θ2 характеризуют скорость релаксации и могут быть функциями
переменных состояния.

С использованием выбранной внутренней энергии термодинамические силы вычис-
ляются следующим образом:

Eα1 =
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Ec1 = e1 +
p1
ρ1
− e2 −

p2
ρ2

+ (1− 2c1)
wiwi

2
− 1

8
c2s
(
tr
(
g2
)
− 3
)
, (7)

Ewi = c1c2w
i, Es = T = c1

∂e1
∂s

+ c2
∂e2
∂s

.

Уравнения (1) могут быть преобразованы к симметричной форме и удовлетворяют
законам сохранения энергии и роста энтропии [1]. Они могут быть использованы для
моделирования сложных процессов в пористой среде (в том числе течений жидкости в
деформируемой среде), сопровождающихся изменением температуры.

В следующем пункте для вывода уравнений волн малой амплитуды будем исполь-
зовать эквивалентную (1) систему уравнений в терминах переменных состояния фаз,
подобно тому как это было сделано в [1]:
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2.2. Линейная система дифференциальных уравнений
для распространения волн малой амплитуды

Нас интересует моделирование волновых полей малой амплитуды. Для вывода соот-
ветствующих дифференциальных уравнений следует линеаризовать (8) в предположении
малости деформаций и малых изменений температуры. Кроме этого, поскольку наша
цель — вывести уравнения, применимые в некотором диапазоне температур, следует вы-
брать начальное состояние среды равновесным, но допускающим вариации температуры.
Таким образом, предположим, что в стационарном начальном неподвижном состоянии
среды с заданной пористостью тензор сдвиговых напряжений равен нулю, давление рав-
но внешнему давлению (атмосферному), а температура соответствует постоянной внеш-
ней температуре (атмосферной), но которая может варьироваться. Данному состоянию
среды соответствуют значения ее переменных

α1 = α0
1, ρ1 = ρ01, ρ2 = ρ02, vi1 = 0, vi2 = 0, s = s0, Aij = A0

ij , (9)

причем константы ρ01, ρ
0
2, s0 определяются из условий внешнего равновесия p1(ρ01, s0) =

p2(ρ
0
2, s0) = p0, T (ρ01, ρ

0
2, s0) = T0, где p0, T0 — внешние давление и температура. Нас
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интересуют вариации температуры в диапазоне нескольких градусов вблизи точки за-
мерзания. В таком диапазоне изменения температуры вариации плотностей как твердого
тела, так и жидкости пренебрежимо малы (заметим, что коэффициент объемного теп-
лового расширения воды имеет порядок 10−4K−1, а линейного расширения материала
скелета — порядок 10−5K−1). Поэтому с целью упрощения выводимых уравнений пред-
положим, что изменение внешней температуры не приводит к изменению плотностей
фаз, и будем считать, что ρ01, ρ02 — константы, не зависящие от температуры, и, соответ-
ственно, деформированное состояние среды соответствует значениям дисторсии A0

ij = δij
при ненапряженном состоянии среды. Можно также считать в силу малости изменения
начальной плотности при вариациях температуры, что начальной температуре соответ-
ствует начальная энтропия s0 = 0.

Приступим к выводу уравнений для малых возмущений стационарного решения (9)
и будем искать решение системы (8) для возмущений переменных состояния:

α1 = α0
1 + ∆α1, ρk = ρ0k + ∆ρk, vik = ∆vik, s = s0 + ∆s, Aij = δij + ∆Aij . (10)

Подставим данное представление решения в (8) и отбросим члены возмущения решения
порядка ∆2 и выше. Получим следующую систему:

∂(α0
1ρ

0
1∆v

i
1 + α0

2ρ
0
2∆v

i
2)

∂t
+
∂(∆pδik −∆σik)

∂xk
= 0, (11а)

∂∆Aik
∂t

+
∂∆vj

∂xk
= −∆EAik

θ
, (11б)

∂(α0
1∆ρ1 + ρ01∆α1)

∂t
+
∂(α0

1ρ
0
1∆v

k
1 )

∂xk
= 0, (11в)

∂(α0
2∆ρ2 + ρ02∆α2)

∂t
+
∂(α0

2ρ
0
2∆v

k
2 )

∂xk
= 0, (11г)

∂(∆vk1 −∆vk2 )

∂t
+
∂
(
∆p1/ρ

0
1 −∆p2/ρ

0
2

)
∂xk

= −∆Ewk

θ2
, (11д)

∂∆α1

∂t
= −∆Eα1

θ1
, (11е)

∂∆s

∂t
= 0. (11ж)

Здесь ∆p = ∆(α1p1 + α2p2), ∆σij = −∆

(
c2
ρc2s
2

(
gikgkj −

1

3
glkgklδij

))
, ∆Ewk

= ∆(c1c2w
i),

∆EA = ∆

(
c2
c2s
2
A−>

(
g2 − tr(g2)

3
I

))
, ∆Eα1 = ∆

(
p2 − p1

ρ

)
.

Сделаем теперь упрощающее предположение о мгновенной релаксации давлений фаз
к единому значению (θ1 → 0). Поскольку давления выравниваются за счет распростра-
нения волн и их отражения от границ раздела фаз, а характерный масштаб порового
пространства мал по сравнению с масштабами сейсмических волн, такое предположение
справедливо. Мгновенная релаксация давлений означает, что ∆p1 = ∆p2, что дает нам
следующее соотношение для возмущений плотностей фаз (здесь нужно учесть то, что
∆s = 0 — следствие уравнения (11ж)):

K1

ρ10
∆ρ1 =

K2

ρ20
∆ρ2, (12)
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где K1 =
1

ρ01

∂p1
∂ρ1

∣∣∣
ρ1=ρ01,s=0

, K2 =
1

ρ02

∂p2
∂ρ2

∣∣∣
ρ2=ρ02,s=0

— объемные модули фаз. Подчеркнем,

что алгебраическое уравнение (12) в итоговой системе уравнений следует использовать
вместо дифференциального уравнения (11е). Далее, в силу мгновенной релаксации дав-
ления, обозначая p1 = p2 = P , получим ∆p = ∆P , поскольку ∆α1 = −∆α2 в силу
условия насыщения α1 + α2 = α0

1 + α0
2 = 1.

Для силы межфазного трения, очевидно, получим ∆Ewk
= c01c

0
2

(
∆vk1 −∆vk2

)
.

Теперь введем новую переменную состояния ε =
1

2

(
∆A + ∆A>

)
— тензор малых де-

формаций, с помощью которого тензор деформации Фингера записывается как
G = I + 2ε. Для вычисления ∆EAik

в уравнении для дисторсии, используя разложение

g = I + ∆g, получим
(
g2 − tr

(
g2

)
3

I
)

= 2
(

∆g − 1

3
tr(∆g)I

)
. Далее, для нормализован-

ного тензора Фингера g можно получить выражение через тензор малых деформаций
∆g = 2

(
ε − 1

3
tr(ε)I

)
. Окончательно получим ∆EA = 2c02c

2
s

(
ε − 1

3
tr(ε)I

)
. Аналогично

можно показать, что ∆σij = 2c02c
2
s

(
εij −

1

3
(ε11 + ε22 + ε33)δij

)
.

Заметим еще, что поскольку термодинамические величины EA и σij выражаются
через тензор малых деформаций, вместо уравнения для ∆Aij можно использовать его

следствие — уравнение для тензора деформаций ∂εik
∂t

+
1

2

(
∂∆vj

∂xk
+

∂∆vk

∂xj

)
= −∆EAik

θ
.

Основываясь на вышеприведенных формулах, можно сформулировать окончатель-
ную форму уравнений для малых возмущений, вводя новые переменные состояния:
V i =

(
α0
1ρ

0
1

ρ0
∆vi1 +

α0
2ρ

0
2

ρ0
∆vi2

)
= c01∆v

i
1 + c02∆v

i
2, W k = ∆vk2 − ∆vk2 , P = ∆p1 = K1∆ρ1 =

∆p2 = K2∆ρ2, Σik = 2c02c
2
s

(
εij −

1

3
(ε11 + ε22 + ε33)δij

)
, где ρ0 = α0

1ρ
0
1 + α0

2ρ
0
2.

Таким образом, мы приходим к гиперболической системе линейных дифференциаль-
ных уравнений

ρ0
∂V i

∂t
+
∂P

∂xi
− ∂Σik

∂xk
= 0, (13а)

∂W k

∂t
+

(
1

ρ01
− 1

ρ02

)
∂P

∂xk
== −χW k, (13б)

∂P

∂t
+K

∂V k

∂xk
+
α0
1α

0
2

ρ0

(
ρ02 − ρ01

)
K
∂W k

∂xk
= F, (13в)

∂Σik

∂t
− µ

(
∂V i

∂xk
+
∂V k

∂xi
− 2

3
δik
∂V j

∂xj

)
= −Σik

τ
. (13г)

Здесь V i,W k, P , Σik — соответственно малые возмущения скорости смеси, относительной
скорости, давления и тензора сдвиговых напряжений в стационарном ненапряженном со-
стоянии;K =

(
α0
1K
−1
1 +α0

2K
−1
2

)−1 — объемный модуль смеси; µ = α0
2ρ

0
2c

2
s — модуль сдвига

смеси (предполагается, что модуль сдвига в жидкости равен нулю); K1 = ρ01
∂p1
∂ρ1

∣∣∣
ρ1=ρ01

,

K2 = ρ02
∂p2
∂ρ2

∣∣∣
ρ2=ρ02

— объемные модули жидкой и твердой фаз соответственно; χ =
c01c

0
2

θ2
—

коэффициент межфазного трения; τ = θ. Индекс 0 обозначает начальные невозмущен-
ные значения переменных состояния в стационарном состоянии.

Уравнения (13б) и (13г) содержат механизмы диссипации, соответствующие межфаз-
ному трению и релаксации сдвиговых напряжений. Представленный в (13в) источник
F = F (x, t) в правой части предназначен для генерации волн в среде.
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Нас интересует изучение свойств волновых полей при изменении температуры. Хотя
в системе (13) температура не представлена в явном виде, ее влияние выражается через
температурную зависимость коэффициентов уравнений. Наибольший интерес представ-
ляет изменение волновых свойств среды для случая фазовых превращений в насыщаю-
щей жидкости при ее переходе из твердого состояния в жидкое. Примерами таких яв-
лений могут служить оттаивание вечной мерзлоты и разложение газогидратов. В этом
случае существенное влияние на свойства волновых полей может оказывать образование
и изменение пористости с изменением температуры, температурная зависимость коэф-
фициента межфазного трения и времени релаксации касательных напряжений. Ниже
мы численно исследуем влияние упомянутых температурных зависимостей на свойства
сейсмических волновых полей.

3. Метод конечных разностей

Метод, используемый для численного моделирования, основан на схеме конечных
разностей на сдвинутых сетках [11, 12]. Для удобства в двумерном случае введем новые
обозначения для координат x1 = x, x2 = y и переменных состояния V1 = Vx, V2 = Vy,
W1 = Wx, W2 = Wy, Σ11 = Σxx, Σ22 = Σyy, Σ12 = Σxy. В пространственно-временной об-
ласти (t, x, y) введем сетку с целыми узлами tn = n∆t, xi = i∆x, yj = j∆y и полуцелыми
узлами tn+1/2 = (n+ 1/2)∆t, xi+1/2 = (i+ 1/2)∆x, yj+1/2 = (j + 1/2)∆y, где ∆t, ∆x и ∆y
обозначают шаги сетки по времени и по пространству.

Для дискретной функции fni,j = f(tn, xi, yj) определим разностные операторы второго
порядка точности по времени

Dt[f ]ni,j =
(f)

n+1/2
i,j − (f)

n−1/2
i,j

∆t
, At[f ]ni,j =

(f)
n+1/2
i,j + (f)

n−1/2
i,j

2
(14)

и разностные операторы четвертого порядка точности по пространству (шаблон Леван-
дера)

Dx[f ]ni,j =
1

∆x

{
9

8

(
(f)ni+1/2,j − (f)ni−1/2,j

)
− 1

24

(
(f)ni+3/2,j − (f)ni−3/2,j

)}
, (15)

Dy[f ]ni,j =
1

∆y

{
9

8

(
(f)ni,j+1/2 − (f)ni,j−1/2

)
− 1

24

(
(f)ni,j+3/2 − (f)ni,j−3/2

)}
. (16)

В основе конечно-разностной схемы на сдвинутых сетках лежит метод конечных объе-
мов [13], примененный к системе уравнений (13). Особенность сдвинутых сеток заклю-
чается в определении параметров среды и компонент волнового поля в различных узлах
пространственно-временной сетки. Предполагается, что параметры среды постоянны в
пределах каждой ячейки сетки [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] и могут претерпевать раз-
рыв только вдоль линий сетки. Скорости смеси Vx, Vy и относительные скорости Wx, Wy

определяются в узлах сетки с индексами (i+1/2, j), (i, j+1/2) как (Vx)ni+1/2,j , (Vy)
n
i,j+1/2,

(Wx)ni+1/2,j , (Wy)
n
i,j+1/2. Давление и нормальная составляющая девиатора напряжения

определяются в узлах сетки (i, j) как (P )
n+1/2
i,j , (Σxx)

n+1/2
i,j , (Σyy)

n+1/2
i,j , а напряжение

сдвига определяется в узлах сетки (i+ 1/2, j + 1/2) как (Σxy)
n+1/2
i+1/2,j+1/2. Геометрическое

расположение соответствующих узлов и компонент можно увидеть на рисунке 1.
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Рис. 1. Относительное положение компонент волнового поля на сдвинутой сетке вблизи грани-
цы раздела сред: квадрат (целые i и j) — Σxx, Σyy, P ; звезда (полуцелые i и j) — Σxy; треугольник
(полуцелые i, целые j) — Vx, Wx; кружок (целые i, полуцелые j) — Vy, Wy. Мелкая пунктирная
линия — граница раздела сред на сдвинутой сетке

Построенная конечно-разностная схема имеет вид

Dt[Vx]
n−1/2
i+1/2,j = −

〈
1

ρ0

〉
i+1/2,j

Dx[P ]
n−1/2
i+1/2,j+〈

1

ρ0

〉
i+1/2,j

(
Dx[Σxx]

n−1/2
i+1/2,j +Dy[Σxy]

n−1/2
i+1/2,j

)
,

Dt[Vy]
n−1/2
i,j+1/2 = −

〈
1

ρ0

〉
i,j+1/2

Dy[P ]
n−1/2
i,j+1/2+〈

1

ρ0

〉
i,j+1/2

(
Dx[Σxy]

n−1/2
i,j+1/2 +Dy[Σyy]

n−1/2
i,j+1/2

)
,

Dt[Wx]
n−1/2
i+1/2,j = −

〈
1

ρ01
− 1

ρ02

〉
i+1/2,j

Dx[P ]
n−1/2
i+1/2,j −

〈
c01c

0
2/θ2

〉
i+1/2,j

At[Wx]
n−1/2
i+1/2,j ,

Dt[Wy]
n−1/2
i,j+1/2 = −

〈
1

ρ01
− 1

ρ02

〉
i,j+1/2

Dy[P ]
n−1/2
i,j+1/2 −

〈
c01c

0
2/θ2

〉
i,j+1/2

At[Wy]
n−1/2
i,j+1/2,

Dt[P ]ni,j = −(K)i,j
(
Dx[Vx]ni,j +Dy[Vy]

n
i,j

)
−((

ρ02 − ρ01
)
α0
1α

0
2K/ρ

0
)
i,j

(
Dx[Wx]ni,j +Dy[Wy]

n
i,j

)
,

Dt[Σxx]ni,j = (µ)i,j

(
4

3
Dx[Vx]ni,j −

2

3
Dy[Vy]

n
i,j

)
− (1/τ)i,jAt[Σxx]ni,j ,

Dt[Σyy]
n
i,j = (µ)i,j

(
4

3
Dy[Vy]

n
i,j −

2

3
Dx[Vx]ni,j

)
− (1/τ)i,jAt[Σyy]

n
i,j ,

Dt[Σxy]
n
i+1/2,j+1/2 = {µ}i+1/2,j+1/2

(
Dx[Σy]

n
i+1/2,j+1/2 +Dy[Vx]ni+1/2,j+1/2

)
−

{1/τ}i+1/2,j+1/2At[Σxy]
n
i+1/2,j+1/2,

(17)

где параметры среды на сдвинутой сетке определяются как среднее арифметическое
усреднение

〈f〉i+1/2,j = (fi,j + fi+1,j)/2, 〈f〉i,j+1/2 = (fi,j + fi,j+1)/2, (18)

или среднее гармоническое усреднение [14]
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fi+1/2,j+1/2 =

[
1

4

(
1

fi,j
+

1

fi+1,j
+

1

fi,j+1
+

1

fi+1,j+1

)]−1
. (19)

4. Численные эксперименты

Изучим особенности поведения сейсмических волновых полей при изменении тем-
пературы газогидратов. Математическое описание данного процесса должно учитывать
фазовые превращения, происходящие в насыщающей жидкости при переходе газогидра-
тов из твердого состояния в жидкое. В этом случае существенное влияние на свойства
волновых полей могут оказывать образование пористости и ее изменение с изменени-
ем температуры, влияющей на коэффициент межфазного трения и время релаксации
касательных напряжений. Ниже мы численно исследуем влияние упомянутых темпера-
турных зависимостей на свойства волновых полей.

Прежде всего необходимо убедиться в корректном описании волновых процессов в
газогидратах с помощью математической модели (13). Для этого рассмотрим однород-
ную пороупругую среду с параметрами газогидрата, приведенными в таблице. Мы пред-
полагаем, что газогидраты можно рассматривать как пороупругие среды с различной
пористостью. В зависимости от температуры и давления внутри оттаивающего газогид-
рата среда может быть либо заморожена (твердое состояние), либо находиться в процессе
перехода в жидкое или газообразное состояние при повышении температуры. В заморо-
женном состоянии газогидрат можно рассматривать как предельный случай пороупру-
гой среды — упругодеформируемую среду с нулевой пористостью, задав в системе (13)
пористость φ = α0

1 = 0. В процессе растепления пористость среды увеличивается до
предельного значения φ = 1, соответствующего переходу среды в жидкое/газообразное
состояние.

Таблица. Параметры среды

Среда Параметр Обозн. Значение Един. измер.
Вмещающяя среда Скорость продольной волны Vp 2400 м/с

Скорость поперечной волны Vs 1800 м/с
Плотность ρ2 2500 кг/м3

Газогидрат Скорость продольной волны Vp 3800 м/с
Твердое состояние, φ = 0 Скорость поперечной волны Vs 2400 м/с

Плотность ρ2 2500 кг/м3

Газогидрат Скорость продольной волны Vp 1500 м/с
Жидкое состояние, φ = 1 Скорость поперечной волны Vs 0 м/с

Плотность ρ1 1040 кг/м3

Диссипат. параметры Межфазное трение χ 3.36 · 10−7 с−1

Время релаксации τ 10−4 с

Расчеты проводились для области, представляющей собой квадрат со стороной 800м.
Волновое поле возбуждалось источником вертикального типа с Fx(x, y, t) = 0 и
Fy(x, y, t) = δ(x0, y0)f(t), где δ — дельта-функция Дирака, определяющая положение
источника в центре области (x0, y0) = (400, 400)м. Функция времени f(t) задавалась
вейвлетом Рикера f(t) = (1−ω2(t− t0)2/2) exp[−ω2(t− t0)2/4] с доминирующей частотой
f0 = 150Гц, угловой частотой ω = 2πf0 и задержкой импульса t0 = 2/f0.

На рис. 2 представлены снимки волнового поля для однородной пороупругой среды,
рассчитанные в момент времени t = 0.1 с для различных пористостей: φ = 0, φ = 0.5
и φ = 1. Как видно из графиков, волновое поле существенно изменяется в зависимости
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от пористости среды. В случае пористости φ = 1 у нас имеется чисто жидкая среда,
где существует только волна давления, распространяющаяся со скоростью жидкой фа-
зы 1500м/с. В случае пористости φ = 0 имеется чисто упругая среда с продольными
и поперечными волнами, распространяющимися со скоростями 3800м/с и 2400м/с со-
ответственно. А в случае пористости φ = 0.5 вместе с продольными и поперечными
волнами мы наблюдаем появление медленной волны Био в пороупругой среде. Скорость
этих волн зависит от частоты сигнала в источнике и может быть оценена с помощью
дисперсионных кривых [3].

Рис. 2. Снимки волнового поля для компоненты скорости смеси Vy, записанные для времени
релаксации τ = ∞ и пористости φ = 1 (слева), φ = 0.5 (посередине), φ = 0 (справа) в момент
времени 0.1 секунды

Следующим этапом в верификации использованной математической модели являет-
ся изучение механизмов затухания сейсмических волн, включенных в систему уравне-
ний (13). Следует отметить, что основными причинами поглощения сейсмической энер-
гии в пороупругой среде являются внутреннее межфазное трение и релаксация напря-
жений. Под межфазным трением в пористых средах понимается сила трения между
различными фазами, например между жидкой и твердой фазами. Процессы релаксации
напряжений представляют собой процессы, в которых напряжения уменьшаются после
приложения внешней силы. При таянии газогидратов релаксация напряжений становит-
ся более интенсивной, потому что кристаллическая структура газогидрата переходит из
твердого состояния в жидкое, что приводит к уменьшению сопротивляемости матери-
ала при сдвиговых напряжениях. Этот процесс зависит от изменения температуры и
давления и в совокупности способствует релаксации напряжений в пористых средах.

Для того чтобы убедиться, что наша модель обеспечивает постоянство Q-фактора в
сейсмическом диапазоне частот, мы провели серию численных экспериментов. Для оцен-
ки поглощения энергии сейсмических волн мы оценивали коэффициент добротности Q.

Полученные результаты показали, что межфазное трение в основном влияет на за-
тухание медленной P-волны Био, а член, отвечающий за релаксацию сдвигового напря-
жения, влияет на ослабление амплитуд быстрых P- и S-волн. В сейсмическом диапазоне
частот медленная P-волна очень быстро затухает и не учитывается при интерпретации
сейсмических данных. Поэтому мы сосредоточились на механизме релаксации сдвиговых
напряжений и его влиянии на затухание волн, полагая в расчетах χ = 0.

Как было отмечено выше, механизмы затухания сейсмических волн в модели (13)
учитываются путем введения двух членов:
1) в правой части уравнения (13б) для относительных скоростей wi — соответствующий
силе межфазного трения с коэффициентом трения χ = c1c2/θ;
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2) в правой части уравнения (13г) для девиатора напряжений σik — соответствующий
релаксации напряжения сдвига со временем релаксации τ .

Корректное введение затухания должно обеспечить постоянство коэффициента доб-
ротности Q в диапазоне сейсмических частот.

Расчеты проводились для различных значений пористости и времен релаксаций. На
рис. 3 приведены оценки Q-фактора для среды с различной пористостью φ = 0.2, φ = 0.5,
φ = 0.8 и φ = 1. Поскольку мы пока не располагаем данными о зависимости времени
релаксации от пористости, была проведена серия расчетов для каждой пористости и для
диапазона времен релаксаций τ =∞, τ = 0.1, τ = 0.05, τ = 0.01, τ = 0.005.

Рис. 3. Сравнение Q-фактора для пористостей φ = 0.2, 0.5, 0.8, 1 и различных времен релак-
сации в сейсмическом диапазоне частот 70–300Гц

Анализ численных результатов подтверждает, что система (13) обеспечивает посто-
янство добротности в сейсмическом диапазоне частот для всех значений пористости и
времен релаксаций. При сравнении графиков на рис. 3 можно заметить, что значение
времени релаксации τ сильно влияет на степень затухания сейсмических волн.

Отметим, что τ в системе (13) играет ту же роль, что и параметр τ в τ -методе, исполь-
зуемом для моделирования поведения вязкоупругих материалов в таких вязкоупругих
моделях, как модель стандартного линейного тела (Standard Linear Solid, SLS) и модель
обобщенного стандартного линейного тела (GSLS) [16,17]. В τ -методе этот параметр ха-
рактеризует зависящий от времени отклик вязкоупругих материалов на приложенное
напряжение и вводится для экономии памяти, заменяя необходимость введения времен
релаксаций напряжений и деформаций отдельно для каждой из P- и S-волн в моделях
SLS и GSLS.
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Далее рассмотрим модель среды, содержащей слой газогидрата внутри однородной
упругой среды. Выбор такой упрощенной модели обусловлен целью выявить основные
особенности поведения отраженных волн от гидратов природных газов. Скорости сейсми-
ческих волн в однородной среде (вмещающяя среда) и газогидратном слое подобраны на
основе зависимостей от температуры скоростей, характерных для газовых гидратов [15],
и приведены в табл. В эксперименте слой газогидрата описывается пороупругой средой,
состоящей из смеси твердой и жидкой фаз. Вмещающая среда рассматривается как чисто
упругая.

В зависимости от глубины залегания, температуры и давления внутри пласта газовые
гидраты могут находиться либо в замороженном состоянии (твердое гидратное кристал-
лическое состояние), либо в процессе деградации (разложение, плавление), если они вы-
ходят за пределы зоны устойчивого состояния, например, при повышении температуры.
Как мы упоминали выше, в случае замерзших газовых гидратов их можно рассматри-
вать как упругую среду, задав в уравнениях (13) объемную долю жидкости α0

1, равной 0.
При плавлении газогидрата пористость слоя φ = α0

1 = 1−α0
2 увеличивается до значения

чисто жидкого (газообразного) состояния φ = 1.
Ниже приведены результаты численного моделирования для следующих параметров

пористости внутри газогидратного слоя: φ = 0, φ = 0.2, φ = 0.5, φ = 0.8. Расчеты про-
водились для области (500 × 500) метров с горизонтальным слоем на глубине от 150
до 250 метров. Волновое поле возбуждалось источником типа объемного расширения
Fx(x, y, t) = Fy(x, y, t) = δ(x0, y0)f(t) в точке (x0 = 0м, y0 = 30м). Временная функ-
ция задается импульсом Рикера с доминирующей частотой f0 = 1КГц. Сейсмограмма
записывалась вдоль вертикальной линии наблюдения, проходящей через источник. Рас-
стояние между приемниками составляло 1м.

Результаты численных расчетов представлены на рис. 4–8. Сейсмограммы для ве-
личины вектора скорости смеси, записанные в интервале времени от 0 до 0.25 с вдоль
вертикальной линии наблюдения, проходящей через источник с интервалом 1 метр меж-
ду приемниками, представлены на рис. 4–7 для разных пористостей. На рис. 8 показаны
наложенные трассы волнового поля для величины вектора скорости смеси, зарегистри-
рованного приемником на глубине 30м в интервале времени от 0.06 до 0.25 с, для разных
значений пористости: φ = 0, φ = 0.2, φ = 0.5, φ = 0.8.

Рис. 4. Сейсмограммы для пористости
φ = 0.0

Рис. 5. Сейсмограммы для пористости
φ = 0.2
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Рис. 6. Сейсмограммы для пористости
φ = 0.5

Рис. 7. Сейсмограммы для пористости
φ = 0.8

Рис. 8. Трассы, записанные для вектора скорости смеси, регистрируемого приемником на глу-
бине 30м в интервале времени 0.06–0.25 с: кривая 1 — φ = 0.2, кривая 2 — φ = 0.5, кривая 3 —
φ = 0.7

Для удобства классификации типов волн на графиках мы используем следующие
обозначения: буквой “P ” обозначим P-волны, буквой “S” — S-волны, отраженные волны
обозначаем “r”, а преломленные — “t ”.

Из сравнения трасс для различных значений пористости в газогидратном слое видно,
что чем больше пористость, тем выше амплитуда отраженной волны от верхней грани-
цы газогидратного слоя (PPr, PSr, SSr). Время прихода этих волн, очевидно, одинаково.
Совершенно иную картину мы наблюдаем для волн, отраженных от нижней границы га-
зогидратного слоя (PPtPrPt, PPtSrPt). Для этих волн наблюдается сильная дисперсия,
обусловленная прохождением волны через пористый слой. С увеличением пористости
скорость пропорционально возрастает, а амплитуда волн существенно не изменяется для
P-волны, отраженной от нижнего слоя. Для S-волны, отраженной от нижнего слоя, с
увеличением пористости наблюдается заметное увеличение амплитуды.
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5. Заключение

В работе представлена симметрическая гиперболическая термодинамически согласо-
ванная модель насыщенной пористой среды для случая конечных деформаций и ее ли-
неаризация для описания сейсмических волновых полей малой амплитуды в пористых
средах, насыщенных жидкостью. Модель позволяет описывать волновые процессы для
разных фазовых состояний насыщающей жидкости при ее переходе из твердого состо-
яния в жидкое, например при оттаивании вечной мерзлоты и разложении газогидратов
под действием температуры.

Разработан численный метод решения системы уравнений СГТС, основанный на ко-
нечных разностях на сдвинутых сетках. Проведены вычислительные эксперименты по
верификации представленной модели, подтверждающие корректное описание волновых
процессов в пороупругих средах. Как и в модели Био, наблюдается появление медленной
продольной волны Био в пороупругой среде. Отличительной особенностью СГТС-модели
является то, что она корректно работает и для предельных значений пористости, когда
пористость равна нулю или единице.

Численно было показано, что механизмы затухания сейсмических волн, включенные
в систему уравнений СГТС, такие как внутреннее межфазное трение и релаксация на-
пряжений, корректно описывают поглощение сейсмической энергии в пороупругой среде.
Для этого была проведена серия экспериментов по оценке коэффициента добротности Q
и было показано постоянство Q-фактора в сейсмическом диапазоне частот для всех зна-
чений пористости и времен релаксации.

Особенности поведения отраженных волн от гидратов природных газов были рас-
смотрены для упрощенной модели среды, содержащей слой газогидрата внутри однород-
ной упругой среды. Численно показано, что для волн, отраженных от верхней границы
пористого слоя, с изменением пористости наблюдается изменение амплитуды, а для волн,
отраженных от нижней границы слоя, наблюдается сильная дисперсия в зависимости от
пористости. Эти особенности волновых полей могут быть использованы для разработки
методов мониторинга эволюции природных скоплений газовых гидратов или оттаивания
вечной мерзлоты.
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