2010. Том 51, № 3

Май – июнь

C. 552 – 557

УДК 541.272:548.737

МОЛЕКУЛЯРНАЯ СТРУКТУРА ГЕКСАФТОРСИЛИКАТА N-МЕТИЛБИС(2-ГИДРОКСИЭТИЛ)АММОНИЯ ПРИ 100 И 298 К

© 2010 М.Г. Воронков¹, А.А. Корлюков², В.С. Фундаменский¹, Э.А. Зельбст³*, М.Ю. Антипин²

¹Иркутский институт химии им. А.Е. Фаворского СО РАН

²Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва ³Восточно-Сибирская государственная академия образования, Иркутск

Статья поступила 22 мая 2009 г.

С доработки — 14 августа 2009 г.

Две полиморфные модификации гексафторсиликата N-метилбис(2-гидроксиэтил)аммония (ГФСА) кристаллизуются в моноклинной сингонии. В независимой части элементарной ячейки низкотемпературной модификации находятся два катиона и анион. В высокотемпературной модификации объем ячейки вдвое меньше, причем анион $[SiF_6]^{2-}$ разупорядочен. В обеих модификациях гексафторсиликата метилбис(2-гидроксиэтил)аммония (HOCH₂CH₂)₂HN⁺[SiF₆]²⁻ анион $[SiF_6]^{2-}$ и катион (HOCH₂CH₂)₂HN⁺CH₃ объединены водородными связями F...H—О. Полиэдр атома кремния в анионе — тетрагональная бипирамида, координационный полиэдр атома азота в катионе — тетраэдр.

Ключевые слова: молекулярная структура, гексафторсиликаты, аммониевые катионы, сокращенные межмолекулярные контакты, РСА, квантово-химические расчеты.

Методом РСА ранее определена кристаллическая структура металлических солей кремнефтористоводородной кислоты (H₂SiF₆)—Na₂SiF₆ и CaSiF₆, а также гексафторсиликатов органических аминов (R₃N⁺H)₂[SiF₆]²⁻ и (R₂N⁺HYN⁺H R'₂) [SiF₆]²⁻ (Y = (CH₂)_n), содержащих однозарядный аммониевый катион или двузарядный диаммониевый катион [1]. Соли бис(2-гидроксиэтил)аммония методом рентгеновской дифракции до сих пор почти не изучены. Определена молекулярная структура лишь двух солей этого типа, содержащих громоздкий сложный анион [2, 3].

ЭКСПЕРИМЕТРАЛЬНАЯ ЧАСТЬ

Дифракционные измерения монокристалла гексафторсиликата N-метилбис(2-гидроксиэтил)аммония (HOCH₂CH₂)₂HN⁺Me[SiF₆]²⁻ (ГФСА) при 100 К проведены на автоматическом дифрактометре Smart APEX II (Мо K_{α} -излучение, 9341 рефлекс, графитовый монохроматор, ω -сканирование, $2\theta_{\text{max}} = 52^{\circ}$, коэффициент поглощения $\mu = 2,27 \text{ cm}^{-1}$). Параметры элементарной ячейки a = 12,241(2), b = 11,865(2), c = 11,436(2) Å, $\beta = 102,7(1)^{\circ}$, V = 1620,5(5) Å³, пр. гр. $P2_1/c$, Z = 4, $d_x = 1,568 \text{ г/см}^3$. Структура решена прямым методом, комплекс программ SHELX-97 [19], уточнение позиционных и температурных параметров неводородных атомов проведено полноматричным МНК по 1249 отражениям с $I > 2\sigma(I)$, окончательное значение факторов достоверности $R_1 = 0,0589$. Поглощение учтено полуэмпирически по эквивалентным отражениям, коэффициенты пропускания 0,9350 и 0,9776. Атомы водорода метиленовых групп рассчитаны геометрически. Атомы H при атомах O и N выявлены из разностных Фурье-синтезов электрон-

^{*} E-mail: zelbst@rambler.ru

Таблица 1

	×	1			1 1	~1	
Связь	d	Угол	ω	Связь	d	Угол	ω
	Ν	Лолекула	1		Молекула 1'		
$N_1 - C_3$	1,501(3)	$C_3N_1C_4$	113,0(2)	N ₁ 'C ₃ '	1,509(3)	$C_3'N_1'C_4'$	112,4(2)
N_1 — C_4	1,507(3)	$C_3N_1C_5$	111,3(2)	$N_1' - C_4'$	1,510(3)	$C_3'N_1'C_5'$	111,1(2)
$N_1 - C_5$	1,499(3)	$C_4N_1C_5$	109,9(2)	N ₁ 'C ₅ '	1,493(3)	$C_4'N_1'C_5'$	110,1(2)
N_1 — H_1	0,9200	$C_3N_1H_1 \\$	107	N_1' — H_1'	0,9200	$C_3^{\prime}N_1H_1^{\prime}$	109
$O_1 - C_1$	1,418(3)	$C_4N_1H_1$	111	$O_1' - C_1'$	1,424(3)	$C_4^{\prime}N_1H_1^{\prime}$	109
$O_2 - C_2$	1,428(3)	$C_5N_1H_1$	104	O ₂ '—C ₂ '	1,428(3)	$C_5^\prime N_1 H_1^\prime$	106
$C_1 - C_3$	1,519(3)	$N_1C_3C_1$	111,8(2)	C ₁ '—C ₃ '	1,519(3)	$N_1C_3'C_1'$	111,4(2)
$C_2 - C_4$	1,511(4)	$C_3C_1O_1$	111,7(2)	$C_{2}'-C_{4}'$	1,511(4)	$C_3'C_1'O_1'$	111,6(2)
$O_1 - H_1$	0,8500	$C_1O_1H_1$	111,9(2)	O_1' — H_1'	0,8500	$C_1{}^\prime O_1{}^\prime H_1{}^\prime$	110
O_2 — H_2	0,8500	$N_1C_2C_4$	111,2(2)	O_2' — H_2'	0,8500	$N_1^{\prime}C_2^{\prime}C_4^{\prime}$	110,8(2)
	—	$C_4C_2O_2$	108,4(2)	—		$C_4^{\prime}C_2^{\prime}O_2^{\prime}$	107,9(2)
	_	$C_2O_2H_2$	109	_		$C_2^{\prime}O_2^{\prime}H_2^{\prime}$	108

Длины связей (d, Å) и валентные углы (ω, град.) в двух независимых катионах метилбис(2-гидроксиэтил)аммония 1 и 1' при температуре 100 К

ной плотности. Уточнение атомов Н провели в изотропном приближении. Для уточнения позиций атомов F на длины связей Si—F накладывали ограничения. Все длины Si—F полагали одинаковыми с отклонениями не более 0,005 Å (инструкция SADI).

Дифракционные измерения кристалла ГФСА при 298 К проведены на автоматическом дифрактометре Enraf Nonius Kappa CCD (Мо K_{α} -излучение, 3278 рефлексов, графитовый монохроматор, ω -сканирование, $2\theta_{\text{max}} = 55,3^{\circ}$, коэффициент поглощения $\mu = 2,21 \text{ см}^{-1}$). Параметры элементарной ячейки a = 7,4680(6), b = 11,9730(9), c = 11,6120(18) Å, $\beta = 126,58^{\circ}$, V = 833,78(16) Å³, пр. гр. $P2_1/c$, Z = 2, $d_x = 1,523$ г/см³. Структура решена прямым методом на комплексе программ SIR-2004 [20] в пространственной группе $P2_1/c$, уточнение позиционных и температурных параметров неводородных атомов проведено полноматричным МНК по 1249 отражениям с $I > 2\sigma(I)$, окончательное значение фактора достоверности R = 0,052.

Длины связей и валентные углы в катионе ГФСА для низко- и высокотемпературной модификаций приведены в табл. 1 и 2, нумерация атомов в комплексе указана на рис. 1.

CIF-файлы, содержащие полную информацию об исследованных структурах, депонированы в ССDС под номерами 731712 и 731713 и могут быть получены на интернет-сайте: www.ccdc.cam.ac.uk/data request/cif.

Таблица 2

Длины связей (d, Å) и валентные углы (ω, град.) в катионе метилбис(2-гидроксиэтил)аммония при температуре 298 К

Связь	d	Связь	d	Угол	ω	Угол	ω
$N_1 - C_3$ $N_1 - C_4$ $N_1 - C_5$ $N_1 - U_5$	1,512(3) 1,495(3) 1,494(3)	$C_1 - C_3$ $C_2 - C_4$ $O_1 - H_1$	1,505(4) 1,512(4) 0,85	$C_3N_1C_4$ $C_3N_1C_5$ $C_4N_1C_5$	113,01(19) 110,6(2) 110,8(2)	$N_1C_3C_1$ C_3C_1O1 $C_1O_1H_{1A}$	112,1(2) 108,1(2) 104,9
$N_1 - H_1$ $O_1 - C_1$	0,88 1,422(3)	O ₂ —H ₂	0,85	$\begin{array}{c} C_3N_1H_1\\ C_4N_1H_1\end{array}$	107 109	$\begin{array}{c} N_1C_2C_4\\ C_4C_2O_2\end{array}$	$111,8(2) \\ 111,7(2)$
$O_2 - C_2$	1,412(3)	—		$C_5N_1H_1$	110	$C_2O_2H_{2A}$	108,1

Рис. 1. Катионы и анионы гексафторсиликата N-метилбис(2-гидроксиэтил)аммония в независимой части элементарной ячейки (100 К). Атомы, обозначенные буквой А, образованы из базовых операциями симметрии –*x*+1, –*y*, –*z*+1 и –*x*, –*y*, –*z*

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Нами установлена кристаллическая структура гексафторсиликата метилбис(2-гидроксиэтил)аммония (HOCH₂CH₂)₂HN⁺Me[SiF₆]²⁻. Эта соль выделена из продуктов гидролиза (1,1дифтор-5-метил)квазисилатрана (N \rightarrow Si)F₂Si(OCH₂CH₂)₂NH [4] во влажном диметилформамиде. В дальнейшем оказалось, что ГФСА легко образуется при взаимодействии метилбис(2гидроксиэтил)амина с H₂SiF₆. Как известно, амины (B) образуют с H₂SiF₆ гексафторсиликаты состава 2:1 — B₂·H₂SiF₆ [5, 6]. Неудивительно, что ГФСА также является комплексом состава 2:1 — 2(HOCH₂CH₂)₂N⁺HCH₃·[SiF₆]²⁻.

Из структур более двух десятков органических аммониевых гексафторсиликатов для сравнения с ГФСА мы выбрали четыре, содержащие однозарядные катионы — MeN⁺H₃ [7], $(Me_2CH)_2N^+H_2$ [8], $(CH_2)_2N^+H_2$ [9] и двузарядный катион $H_2N^+(CH_2CH_2)_2N^+H_2$ [10].

Методом рентгеновской дифракции кристаллы ГФСА изучены при 100 и 298 К.

При 100 К в независимой части ячейки ГФСА находятся две половинки аниона $[SiF_6]^{2-}$ и два соответствующих аммониевых катиона (HOCH₂CH₂)₂HN⁺CH₃ (см. рис. 1). В этой модификации ГФСА анион $[SiF_6]^{2-}$ — искаженный октаэдр, а точнее тетрагональная бипирамида с попарно симметричными аксиальными и экваториальными связями Si—F. При этом одинаковая длина двух аксиальных связей Si—F (1,698(2) Å) больше четырех попарно одинаковых экваториальных связей Si—F (1,689(2) и 1,671(2) Å).

Два атома фтора в анионе $[SiF_6]^{2-}$ (аксиальный F_1 и экваториальный F_3) объединены водородными связями с гидроксильными группами катиона — $F_1...H_2$ — O_2 1,82 Å и $F_3...H_1$ — O_1 1,85 Å. При этом характерные для водородных связей углы FHO близки к линейным –171° (см. рис. 1).

Катион в ГФСА по структуре аналогичен катиону, содержащемуся в ферроценил(трифтор)борате N,N'-бисметил(2-гидроксиэтил)аммония [3]. Валентные углы и длины связей в последнем отличаются от одноименных значений в ГФСА несущественно, длины связей — на сотые доли ангстрема, а валентные углы — на 1—3°. Координационный полиэдр атома азота в обоих симметрично не связанных в ячейке катионах (1 и 1') (HOCH₂CH₂)₂HN⁺CH₃ представляет собой тетраэдр, в вершинах которого находятся три атома углерода и атом водорода. Атом H в полиэдре N направлен внутрь группировки N(CH₂CH₂OH)₂ и связан бифуркационными связями с двумя атомами кислорода. При этом валентные углы атома азота находятся в пределах 107—112° (см. табл. 1), что обычно для тетраэдрических полиэдров. Межатомные расстояния в молекулах катионов 1 и 1' приведены в табл. 1.

В упаковке молекул ГФСА низко- и высокотемпературной модификаций в элементарной ячейке кристалла анионы $[SiF_6]^{2-}$ и катионы метилбис(2-гидроксиэтил)аммония образуют цепи за счет водородных связей F...H—О. Согласно опубликованным данным [1] анион $[SiF_6]^{2-}$ нередко образует прочные водородные связи F...H—О с сольватными и координационными молекулами воды (42 структуры). Подобные водородные связи со спиртами и карбоновыми ки-

Таблица 3

-						
	Связь	$\rho(r), \mathbf{e} \cdot \mathbf{\mathring{A}}^{-3}$	$\nabla^2 \rho(r), \mathbf{e} \cdot \mathring{A}^{-5}$	$E^{\mathrm{e}}(r), \mathrm{e} \cdot \mathrm{\mathring{A}}^{-3}$	$V^{\mathrm{e}}(r), \mathrm{e} \cdot \mathrm{\mathring{A}}^{-3}$	<i>Е</i> _Н , ккал/моль
ŀ	F_1H_1	0,145	2,119	-0,008	-0,133	12,8
ł	F_1H_{1N}	0,247	3,547	-0,00001	-0,248	23,1
ł	F_2H_{1A}	0,090	1,222	-0,009	-0,068	6,3
ł	F_2H_{4A}	0,116	1,610	-0,011	-0,090	8,4
ł	F2H3A	0,073	1,141	-0,009	-0,061	5,7
ł	F_3H_2	0,227	3,484	-0,005	-0,233	21,7

Топологические параметры* и прочность водородных связей для H-связанного катион-анионного комплекса, рассчитанного методом M05-2X/6-311++G(d,p)

* Данные приведены для независимой части комплекса (точечная группа C_i).

слотами наблюдали достаточно редко. К немногочисленным примерам относятся связи О—Н...F в комплексах с SiF₄ [11], пирокатехином [12], 2-пиридинкарбоновой кислотой [13], N-карбоксиметил-N-пиперидинием [14] и протонированной мочевиной [15]. Очевидно, что кислотность гидроксильных групп в этих комплексах заметно выше, чем в случае катиона в ГФСА. Однако геометрические параметры Н-связей в структуре ГФСА сопоставимы с вышеприведенными примерами [11—15]. Для объяснения этого нами выполнены квантовохимические расчеты (см. ниже).

В высокотемпературной модификации (298 К) объем элементарной ячейки уменьшен в 2 раза по сравнению с низкотемпературной модификацией. При этом в анионе $[SiF_6]^{2-}$ экваториальные атомы фтора становятся разупорядоченными по двум позициям (уточненное соотношение 1:1). Это эквивалентно развороту половины группировки вокруг аксиальной линии F—Si—F примерно на 45°. Тепловые параметры экваториальных атомов фтора различаются незначительно, а все разупорядоченные атомы фтора участвуют в образовании водородных связей. Очевидно, что их разупорядоченность имеет статическую природу. Длины связей и валентные углы в высокотемпературной и низкотемпературной модификации ГФСА различаются незначительно (см. табл. 2).

Квантово-химические расчеты проведены с использованием обменно-корреляционного функционала M05-2x и базисного набора 6-311++G(d,p) с помощью программы GAUSSIAN03W. Принадлежность оптимизированной геометрии к минимуму доказана расчетом матрицы гессиана. Для оценки влияния водородных связей на анион $[SiF_6]^2$ и оценки прочности H-связей использован топологический анализ в рамках теории "Атомы в молекулах" Р. Бэйдера [16] (программа AIMALL [17]) и корреляционная схема, ранее предложенная Эспинозой, Молинзом и Леконтом (ЭМЛ) [18].

Согласно этой схеме энергия H-связи ($E_{\text{H...F}}$) взаимозависима с величиной плотности кинетической энергии в критической точке (КТ) (3,–1). $E_{\text{H...F}} = 627,5095 \cdot (-1/2V^{\text{e}}(r))$, ккал/моль. Топологические характеристики водородных связей приведены в табл. 3.

Количественные характеристики прочности H-связей в ГФСА, основанные на модели низкотемпературной модификации, рассчитаны квантово-химическим методом. В кристалле ГФСА анионы и катионы за счет многих водородных связей и межмолекулярных контактов образуют трехмерный каркас, квантово-химический расчет такой структуры требует периодических граничных условий, поэтому выделение вклада отдельных связей затруднительно. Для более наглядного описания использована упрощенная модель, включающая один анион $[SiF_6]^{2-}$ и два симметричных катиона.

Общий вид модельного H-связанного катион-анионного комплекса представлен на рис. 2. Связи Si—F во всех расчетных комплексах длиннее, чем в кристалле, на 0,02 Å и варьируются в интервале 1,690—1,724 Å. При этом различия между аксиальными и экваториальными атома-

Рис. 2. Общий вид катион-анионного Н-связанного комплекса, рассчитанного методом M05-2X/6-311+ +G(d,p). Обозначения указаны только для независимой части комплекса (точечная группа C_i). Обозначены только атомы Н, участвующие в катионанионных взаимодействиях. Указаны также наиболее короткие межатомные расстояния H...F, Å

ми F достигают 0,03 Å, что хорошо согласуется с экспериментом. Рассчитанные межатомные расстояния Н...F сопоставимы с экспериментальными (см. рис. 2). Единственным заметным различием между этими величинами является образование атомом H1N связи с атомом F1, чего не наблюдается в кристалле ГФСА. Рисунок 2 позволяет предположить, что число взаимодействий Н...F достаточно велико. Действительно, по данным топологического анализа

локализовано 12 КТ (3,–1), соответствующих, согласно теории "Атомы в молекулах", межатомным взаимодействиям Н...F. Величины электронной плотности ($\rho(r)$), ее лапласиана ($\nabla^2 \rho(r)$), плотности локальной энергии ($E^{e}(r)$) и плотности потенциальной энергии (V(r)) в рассчитанных КТ (3,–1) представлены в табл. 3. Все КТ (3,–1) взаимодействий Н...F характеризуются положительными величинами $\nabla^2 \rho(r)$ и отрицательными значениями $E^{e}(r)$, что позволяет их охарактеризовать как межатомные взаимодействия промежуточного типа.

Прочность водородных связей в рассчитанном комплексе ГФСА существенна и варьирует в интервале 6,3—23,1 ккал/моль. Как и ожидалось, связи С—Н...F заметно слабее, чем N—H...F и О—H...F. Однако их совокупный вклад в прочность катион-анионного связывания весьма значителен и составляет примерно треть от суммарной энергии H-связей. По рентгенодифракционным данным в кристалле ГФСА связь N—H...F отсутствует, а вместо нее реализована прочная связь О—H...F с соседним катионом. Анализ величин $E_{\text{H...F}}$ позволяет сделать вывод, что причиной такого прочного катион-анионного связывания в кристалле являются не только прочные H-связи с группами OH и NH, а скорее, кооперативное связывание с участием атомов водорода метиленовых групп.

Благодаря дополнительному связыванию за счет взаимодействий С—Н...F геометрические параметры связей О—Н...F в кристаллической структуре ГФСА и в комплексах $[SiF_6]^{2-}$ с метанолом и карбоновыми кислотами сопоставимы, несмотря на меньшую кислотность гидроксильных атомов водорода в катионе бисметил(2-гидроксиэтил)аммония [3].

Авторы выражают благодарность Российскому фонду фундаментальных исследований (гранты 09-03-00669 и 07-03-01018) за финансовую поддержку.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cambridge Structural Database System. 5.29. 2007.
- 2. Cody V., Hazel J., Langs D.A., Duax W.L. // J. Med. Chem. 1977. 20. P. 1628.
- 3. Bresner C., Aldridge S., Fallis I.A. et al. // Angev. Chem., Int. Ed. 2005. 44. P. 3606.
- 4. Воронков М.Г., Корлюков А.А., Зельбст Э.А. и др. // Докл. АН. 2008. 418, № 4. С. 486 488.
- 5. Долгов Б.Н. Химия кремнеорганических соединений. Л.: Госхимиздат, 1933. С. 168 169.
- 6. Voronkov M.G., Gubanova L.I. // Main Group Metal. Chem. 1987. 10, N 4. P. 209 286.
- 7. Graulich J., Babel D. // Z. Naturforsch. B.: Chem. Sci. 2002. 57. S. 1003.
- 8. Reiss G.J. // Acta Crystallogr. C. 1998. 54. P. 1489.
- 9. Conley B.D., Yearwood B.C., Parkin S., Atwood D.A. // J. Fluor. Chem. 2002. 115. P. 155.
- 10. Tang Z.Q., Dadachov M.S., Lau X.D. // Z. Kristallogr. New Cryst. Struct. 2001. 216. S. 391.

- (a) Casellas H., Pevec A., Kozlevcar B. et al. // Polyhedron. 2005. 24. P. 1549; (b) Casellas H., Pevec A., Kozlevcar B. et al. // Acta Crystallogr., Sect. – 2005. – E61.– m1120; (c) Gamez P., Steensma R.H., Driessen W.L., Reedijk J. // Inorg. Chim. Acta. – 2002. – 333. – P. 51.
- 12. Gelmboldt V.O., Ganin E.V., Domasevitch K.V. // Acta Crystallogr. 2007. C63. o530.
- 13. Szafran M., Dega-Szafran Z., Addlagatta A., Jaskolski M. // J. Mol. Struct. 2001. 598. P. 267.
- Gubin A.I., Buranbaev M.Zh., Nurakhmetov N.N. et al. // Kristallografiya (Russ.) (Crystallogr. Rep.). 1988. 33. – P. 509.
- 15. Sun Shouheng, Carpenter G.B., Sweigar D.A. // J. Organomet. Chem. 1996. 511. P. 257.
- 16. Бейдер Р. Атомы в молекулах. Квантовая теория. М.: Мир, 2001. [Bader R.F.W., Atoms in Molecules. A Quantum Theory. Oxford: Clarendron Press, 1990].
- 17. AIMAll (Version 09.02.01), Todd A. Keith, 2009 (aim.tkgristmill.com)
- 18. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. 285. P. 170.
- 19. SHELX97 [Includes SHELXS97, SHELXL97, CIFTAB] Programs for Crystal Structure Analysis (Release 97-2). Sheldrick G.M., Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen. Germany, 1998.
- 20. Burla M.C., Kaliandro R., Camalli M. et al. Web site: http://www.ic.cnr.it/