УДК 536.71

УРАВНЕНИЕ СОСТОЯНИЯ СОЕДИНЕНИЙ ИЗОТОПОВ ЛИТИЯ С ИЗОТОПАМИ ВОДОРОДА

А. А. Каякин, Л. Ф. Гударенко, Д. Г. Гордеев

РФЯЦ, ВНИИ экспериментальной физики, 607190 Capob, gud@vniief.ru

Предложено полуэмпирическое широкодиапазонное уравнение состояния соединений изотопов лития с изотопами водорода. Уравнение позволяет рассчитать термодинамические свойства как в области сравнительно небольших плотностей, давлений и энергий, доступной для экспериментальных исследований, так и в области сверхвысоких плотностей, давлений и энергий, в которой в настоящее время состояния могут быть оценены только в расчетах по теоретическим моделям. Уравнение состояния содержит эмпирические функции, которые позволяют учесть состав изотопов и влияние на свойства соединения примеси гидрооксида. Возможности уравнения состояния продемонстрированы на примере описания экспериментальных и расчетных данных, характеризующих термодинамические и теплофизические свойства нескольких составов соединений изотопов лития с изотопами водорода.

Ключевые слова: уравнение состояния, гидрид лития, дейтерид лития, изотопы лития, изотопы водорода, метод функционала плотности.

ВВЕДЕНИЕ

Соединения изотопов лития с изотопами водорода (в дальнейшем в тексте будем также использовать сокращенное название этих веществ — гидриды лития) обладают рядом уникальных свойств и используются как важный элемент в различных конструкциях. К настоящему времени термодинамические свойства таких соединений, по сравнению с другими химическими соединениями, исследованы в ударноволновых экспериментах в достаточно широкой области изменения плотности, давления и энергии [1–3]. Причем исследования проведены для химического соединения с разными соотношениями изотопов лития и водорода, что делает их уникальным объектом для разработки модели уравнения состояния, позволяющей проводить расчет термодинамических свойств в широком диапазоне значений плотности, давления, температуры. Создание такого уравнения состояния стало основной целью данной работы. Некоторые способы расчета термодинамических свойств и варианты уравнений состояния гидридов лития, имеющих сравнительно небольшую область применимости, предложены в работах [4, 5]. Из-за большой неопределенности положения границ фазовых переходов в соединениях изотопов лития с изотопами водорода уравнение состояния разработано в однофазном приближении.

СВОЙСТВА СОЕДИНЕНИЙ ИЗОТОПОВ ЛИТИЯ С ИЗОТОПАМИ ВОДОРОДА И МОДЕЛИ ИХ ОПИСАНИЯ

Термодинамические свойства изотопных модификаций гидрида лития исследованы в экспериментах с использованием ударных волн, результаты представлены в работах [1-3]. Авторам не удалось выявить источников с результатами экспериментальных исследований свойств соединений изотопов лития с изотопами водорода при высоком давлении, опубликованными после выхода работ [1–3]. Анализ экспериментальных данных [1] показал, что содержание гидрооксидов заметно влияет на начальную плотность соединений. Присутствие его в соединении есть следствие реакций, протекающих при хранении: $LiH + H_2O \rightarrow LiOH$ + Н₂. При комнатной температуре сжимаемость гидрида лития исследована до давления 250 ГПа [6, 7]. Имеются также экспериментальные данные по теплофизическим свойствам гидрида и дейтерида лития [8–12]. На рис. 1 в координатах температура — давление показаны область применимости представленного в статье уравнения состояния и термодинамические состояния, исследованные в экспериментах и расчетах по разным моделям.

При выполнении данной работы проведен ряд расчетов термодинамических и теплофизических свойств изотопных соединений лития с водородом. Расчеты выполнены методом

[©] Каякин А. А., Гударенко Л. Ф., Гордеев Д. Г., 2014.

Рис. 1. Область применимости УРС и термодинамические состояния, исследованные в экспериментах и расчетах по разным моделям:

1 — граница двухфазной области жидкость пар, расчет по УРС данной работы; 2 — расчет границы перехода твердое тело — жидкость по соотношению (13); 3 — эксперименты на границе перехода твердое тело — жидкость [10, 11]; 4 — расчет ударной адиабаты для LiD по модели ТФПК [19, 22]; 5 — эксперименты на нормальной изобаре [11]; 6 — эксперименты на нормальной изотерме [6, 7]

функционала плотности (МФП) по программе LMTART [13–15], в которой реализован полнопотенциальный метод линейных маффин-тин орбиталей. Полученные результаты служили одним из основных источников информации о термодинамических свойствах соединения за пределами экспериментально исследованной области. По программе LMTART рассчитаны нулевые изотермы, тепловой вклад решетки в твердом состоянии и упругие модули. Все расчеты выполнены без учета спин-орбитального взаимодействия для структур типа NaCl (гранецентрированная кубическая решетка) и CsCl (кубическая решетка). Все электроны учитывались как валентные, использовались три вида энергии хвостов для маффин-тин орбиталей в области вне маффин-тин сферы. Интегрирование по зоне Бриллюэна проводилось линейным методом тетраэдров с применением поправок Блёхеля [16] на сетке, построенной путем разбиения ребер элементарной ячейки в обратном пространстве на 20 частей. В расчетах использовался обменно-корреляционный функционал [17] с градиентной поправкой [18].

По программе LMTART для твердого гидрида лития также были рассчитаны фононная

Рис. 2. Зависимость фононной плотности состояний от частоты колебаний для ${\rm Li}^7{\rm H},\,{\rm Li}^7{\rm D},\,{\rm Li}^7{\rm T},\,{\rm Li}^6{\rm H}$

плотность состояний, свободная энергия и теплоемкость на изохорах. На рис. 2 приведены полученные для ${\rm Li}^7{\rm H}$, ${\rm Li}^6{\rm H}$, ${\rm Li}^7{\rm D}$, ${\rm Li}^7{\rm T}$ зависимости плотности состояний f от частоты колебаний ω . Видно, что влияние изотопов Li и H на плотность состояний проявляется в разных областях температуры. Изменение изотопа водорода значительно влияет на плотность состояний в области высокочастотных колебаний ($\omega > 600 {\rm ~K}$), а изменение изотопа лития, наоборот, заметно изменяет только плотность состояний в области низкочастотных колебаний.

Половина всех состояний находится в диапазоне акустических колебаний, а другая половина делится в соотношении 2 : 1 между состояниями с поперечными и продольными оптическими колебаниями. Эти три группы разделены запрещенными зонами. Такое поведение плотности состояний характерно для соединения с сильно отличающимися молярными массами компонентов. С уменьшением отношения средних молярных масс $\overline{A}_{\text{Li}}/\overline{A}_{\text{H}}$ ширина запрещенных зон уменьшается.

Для учета вклада акустических колебаний в термодинамические функции целесообразно использовать приближение Дебая. Предварительный анализ показал, что для учета вклада оптических колебаний можно воспользоваться моделью Эйнштейна с характеристической температурой $\theta_{\rm E}$. Выражение для свободной энергии ионов (решетки) твердого вещества принято в виде

$$F_p(T) = \frac{6R}{\overline{A}_{\text{Li}} + \overline{A}_{\text{H}}} T \left\{ \frac{1}{2} \left[\ln \left(1 - \exp \left(-\frac{\theta_{\text{D}}}{T} \right) \right) - \left(\frac{T}{\theta_{\text{D}}} \right)^3 \int_{0}^{\theta_{\text{D}}/T} \frac{t^3 dt}{\exp(t) - 1} \right] + \frac{1}{2} \ln \left(1 - \exp \left(-\frac{\theta_{\text{E}}}{T} \right) \right) \right\}, \quad (1)$$

где $\overline{A}_{\rm Li}$ и $\overline{A}_{\rm H}$ — средние молярные массы изотопов лития и изотопов водорода в соединении, R — универсальная газовая постоянная, $\theta_{\rm D}, \theta_{\rm E}$ — характеристические температуры Дебая и Эйнштейна. Молярные массы $\overline{A}_{\rm Li}, \overline{A}_{\rm H}$ и среднюю молярную массу соединения изотопов лития и водорода \overline{A} определим по выражениям

$$\overline{A}_{\text{Li}} = (6 \text{ г/моль}) \cdot f_{\text{Li}^6} + (7 \text{ г/моль}) \cdot f_{\text{Li}^7},$$

 $\overline{A}_{\text{H}} = (1 \text{ г/моль}) \cdot f_{\text{H}} + (2 \text{ г/моль}) \cdot f_{\text{D}} + (3 \text{ г/моль}) \cdot f_{\text{T}},$

$$\overline{A} = \frac{\overline{A}_{\mathrm{Li}} + \overline{A}_{\mathrm{H}}}{2},$$

где $f_{\rm H}$, $f_{\rm D}$, $f_{\rm T}$, $f_{{\rm Li}^6}$, $f_{{\rm Li}^7}$ — атомные доли изотопов водорода и изотопов лития в соединении, для которых выполняется условие $f_{\rm H} + f_{\rm D} + f_{\rm T} = f_{{\rm Li}^6} + f_{{\rm Li}^7} = 1$. Так как частоты колебаний чувствитель-

Так как частоты колебаний чувствительны к изотопному составу, то и характеристические температуры Дебая θ_D и Эйнштейна θ_E зависимы от молярной массы изотопов лития и водорода. Для их определения используем соотношения

$$\theta_{\rm D} = \frac{D_{\rm D}}{\sqrt{A_{\rm Li}}}, \quad \theta_{\rm E} = \frac{D_{\rm E}}{\sqrt{A_{\rm H}}},$$
(2)

где $D_{\rm D}$ и $D_{\rm E}$ — параметры, связывающие $\theta_{\rm D}$ и $\theta_{\rm E}$ со средними молярными массами изотопов лития и водорода. Значения $D_{\rm D}$ и $D_{\rm E}$ не зависят от изотопного состава, а являются характеристиками элементного состава соединения.

Для Li⁷H, Li⁷D, Li⁷T, Li⁶H по МФП рассчитана зависимость изохорической решеточной теплоемкости $c_v = -T(\partial^2 F/\partial T^2)$ от температуры при параметре решетки 7.46 Бор ($\delta = \rho/\rho_0 = 1.115$) структуры NaCl. На рис. 3 представлены результаты этих расчетов и их аппроксимация выражением (1). При аппроксимации получено $D_D = 1.842 \text{ K} \cdot (\text{г/моль})^{0.5}$ и $D_E = 1.262 \text{ K} \cdot (\text{г/моль})^{0.5}$. Из рис. 3 видно, что выражение (1) позволяет хорошо аппроксимировать результаты расчетов зависимости $c_v(T)$ по МФП с учетом изменения характеристических температур в зависимости от изотопного состава по формулам (2).

Для представления некоторых зависимостей, позволяющих характеризовать общие свойства группы веществ — изотопные соединения лития и водорода, удобно использовать приведенную плотность вещества $\overline{\rho} = \rho/\overline{A}$.

Сравним рассчитанные по МФП значения приведенной плотности $\overline{\rho}_0 = \rho_0/\overline{A}$ для Li⁷H, Li⁷D и Li⁷T с экспериментальными данными [1]. Значение ρ_0 для каждого из трех соединений определяли путем аппроксимации сплайнами рассчитанной по МФП

Рис. 3. Зависимость удельной изохорической теплоемкости от температуры для соединений изотопов лития с изотопами водорода на изохоре $\delta = 1.115$:

аппроксимация выражением (1): $1 - \text{Li}^7\text{H}$, $2 - \text{Li}^7\text{D}$, $3 - \text{Li}^7\text{T}$, $4 - \text{Li}^6\text{H}$; расчет МФП: $5 - \text{Li}^7\text{H}$, $6 - \text{Li}^7\text{D}$, $7 - \text{Li}^7\text{T}$, $8 - \text{Li}^6\text{H}$

$$\frac{\overline{\rho_0^{\text{Li}^{7}\text{T}}} - \overline{\rho_0^{\text{Li}^{7}\text{H}}}}{\overline{\rho_0^{\text{Li}^{7}\text{H}}}} = 0.01, \quad \frac{\overline{\rho_0^{\text{Li}^{7}\text{D}}} - \overline{\rho_0^{\text{Li}^{7}\text{H}}}}{\overline{\rho_0^{\text{Li}^{7}\text{H}}}} = 0.007.$$

Эти результаты хорошо согласуются с экспериментальными данными [1] для Li^{7}H и $\text{Li}^{7}\text{D}: \ \overline{\rho}_{0}^{\text{Li}^{7}\text{H}} = 0.1958 \text{ моль/см}^{3}, \ \overline{\rho}_{0}^{\text{Li}^{7}\text{D}} = 0.1978 \text{ моль/см}^{3}, \ (\overline{\rho}_{0}^{\text{Li}^{7}\text{D}} - \overline{\rho}_{0}^{\text{Li}^{7}\text{H}})/\overline{\rho}_{0}^{\text{Li}^{7}\text{H}} = 0.01.$

Сравнение результатов расчетов МФП приведенной плотности с данными из [1] показывает, что расчеты МФП позволяют с хорошей точностью учитывать изменение объема решетки, связанное с заменой изотопа водорода. Частоты колебаний более легкого изотопа водорода выше и, как следствие, давление нулевых колебаний выше, а приведенная плотность ниже (объем больше). К такому же эффекту приводит и замена изотопов лития. Но так как массы Li^6 и Li^7 отличаются незначительно (у лития $M_{\text{Li}^7}/M_{\text{Li}^6} = 1.167$, у водорода $M_{\text{T}}/M_{\text{H}} = 3$), влияние замены изотопов лития намного меньше, чем замены изотопов водорода.

В литературе обсуждается вопрос о возможном фазовом переходе в LiH из структуры NaCl в структуру CsCl. Разные теоретические модели предсказывают этот переход при комнатной температуре в диапазоне давления $p = 220 \div 400$ ГПа, см., например, введение в работе [7]. В [7] также представлены результаты экспериментов по сжатию Li⁷H до давления 254 ГПа при комнатной температуре, фазового перехода не обнаружено.

Выполненные нами расчеты МФП нормальных изотерм для решеток структуры NaCl и CsCl показали, что при $\overline{\rho} \lesssim 0.65$ моль/см³ наименьшей энергией обладает решетка NaCl, а при увеличении плотности предпочтительнее становится структура CsCl. Из расчетов следует, что фазовый переход NaCl \rightarrow CsCl произойдет при давлении $p \approx 288$ ГПа с изменением плотности на ≈ 5.5 %.

На рис. 4 для структур типа NaCl и CsCl приведены рассчитанные МФП зависимости давления Li⁷H от плотности на изотерме T = 293 K с учетом теплового движения атомов. В наших расчетах переход из структуры

типа NaCl в структуру типа CsCl происходит при $p \approx 288$ ГПа с изменением плотности на ≈ 5.5 %. Результаты этих расчетов для структуры типа NaCl находятся в пределах погрешности экспериментальных данных [6] для LiⁿH $(Li^n - природный литий: 92.5 \% Li^7, 7.5 \%$ Li^6) и данных [7] для Li^7H . На рис. 4 приведена также зависимость давления от плотности при T = 293 K, построенная по принятому в данной работе уравнению состояния (УРС) соединения Li⁷H. Зависимость получена в результате аппроксимации экспериментальных данных до давления $p \approx 200 \ \Gamma \Pi a$ и результатов расчетов МФП для структуры типа CsCl при $p \gtrsim 200$ ГПа. В УРС данной работы нормальная изотерма «сглаживает» фазовый переход типа NaCl—CsCl.

В расчетах термодинамических свойств многоатомных веществ в области больших значений давления и плотности по теоретическим моделям, например по модели Томаса — Ферми с поправками Киржница, Калиткина (ТФП) [19], чаще всего используют два способа представления вещества. Первый способ — свойства многоатомного вещества отождествляются со свойствами одноатомного вещества, имеющего атомную массу А и заряд Z ядра такие же, как средняя атомная масса и средний заряд ядра многоатомного вещества. В этом случае, например, средние для Li^7H значения A и Z такие же, как и для вещества He^4 . Заметим, что He⁴ по электронной структуре заметно отличается от Li⁷ и H. Второй способ — многоатомное вещество представляется как гетерогенная смесь элементов, входящих в его состав.

Рис. 4. Зависимости давления ${\rm Li}^7{\rm H}$ и ${\rm Li}^n{\rm H}$ от плотности на изотерме $T=293~{\rm K}$

В данной работе расчеты потенциального давления ${\rm Li}^7{\rm H}~(T=0)$ проведены с использованием модели ТФП, как по средним значениям A и Z, так и в приближении гетерогенной смеси. В модели гетерогенной смеси плотность при постоянных давлении p и температуре T определяется по соотношению

$$\rho = \left(\frac{a}{\rho_1} + \frac{1-a}{\rho_2}\right)^{-1}$$

где ρ_1 , ρ_2 и a, 1-a — плотности и массовые доли компонентов смеси при давлении p и температуре T. Термодинамические функции для Li⁷ и H рассчитаны по модели ТФП [19]. Расчеты по модели гетерогенной смеси и по МФП практически совпадают уже при $p \gtrsim 3\,000$ ГПа ($\rho \gtrsim 8 \, \text{г/см}^3$), в то время как результаты расчета по ТФП со средними значениями A и Z (для He⁴) заметно выше в исследованных диапазонах плотности и давления ($4 < \rho < 28 \, \text{г/см}^3$, 750).

На рис. 5 в координатах ($\overline{\rho}_0, \overline{A}$) представлены данные экспериментов [1, 7] для изотопически чистых соединений Li⁶H, Li⁶D, Li⁷H, Li⁷D и для этих же составов, имеющих в одном случае примеси Li⁷, в другом — Li⁶. Эти дан-

Рис. 5. Зависимость приведенной плотности при нормальных условиях от средней молярной массы для различных изотопных составов гидрида лития:

данные [1, 7]: 1 — составы, содержащие смесь изотопов лития (LiⁿH; LiⁿD; Li⁶_{0.955}Li⁷_{0.045}H; Li⁶_{0.955}Li⁷_{0.045}D) [1]; 2 — изотопически чистые составы (Li⁷H; Li⁶H; Li⁷D; Li⁶D) [1]; 3 — Li⁷H [7]; аппроксимация выражением (3): 4 — Li⁶H^x, 5 — Li⁶_{0.955}Li⁷_{0.045}H^x, 6 — Li⁶_{0.075}Li⁷_{0.925}H^x, 7 — Li⁷H^x, $x = 1 \div 3$

ные аппроксимированы зависимостью, в которой учитывается влияние только изотопов водорода на приведенную плотность:

$$\overline{\rho}_0 = C \left[G + \left(\frac{\overline{A}_{\rm H}}{A_{\rm H}} \right)^r \right],\tag{3}$$

где C = 1 моль/см³ и $A_{\rm H} = 1$ г/моль нормировочные константы; G = -0.8043, r = 0.0029 — безразмерные подгоночные константы. Приведенные на рис. 5 результаты расчета зависимости $\overline{\rho}_0(\overline{A})$ по формуле (3) для соединений изотопов лития с изотопами водорода хорошо согласуются с экспериментальными данными [1], отклонение от эксперимента не более 0.1 %. Данные [4] по параметрам решетки гидридов лития не использовались, так как они имеют систематическое отклонение от данных [1, 7].

Соединения гидридов лития обычно покрыты пленкой гидрооксида LiOH, плотность которого при нормальных условиях $\rho_{\text{LiOH}} \approx$ 1.46 г/см³. Начальную плотность соединений, содержащих примесь LiOH $\rho_{0(\text{LiH} + \text{LiOH})}$, будем оценивать по модели гетерогенной смеси:

$$\rho_{0(\text{LiH} + \text{LiOH})} = \left(\frac{g_{\text{LiOH}}}{\rho_{0(\text{LiOH})}} + \frac{1 - g_{\text{LiOH}}}{\rho_{0(\text{LiH})}}\right)^{-1},$$

где g_{LiOH} — массовая доля примеси LiOH, $\rho_{0(\text{LiOH})}$ — плотность гидрооксида при нормальных условиях (справочные данные), $\rho_{0(\text{LiH})}$ — плотность соединения изотопов лития с изотопами водорода при нормальных условиях (расчет с использованием (3)).

Для описания термодинамических свойств гидридов лития в широкой области изменения плотности, давления, температуры использован модифицированный вариант модели из работы [20]. Общая структура модели сохранена. Свободная энергия представлена в виде трех слагаемых:

$$F(\delta, T) = E_{\mathbf{x}}(\delta) + F_p(\delta, T) + F_e(\delta, T),$$

где $E_{\rm x}(\delta)$ — потенциальная («холодная») составляющая энергии, $F_p(\delta, T)$ — тепловая составляющая свободной энергии ионов, $F_e(\delta, T)$ — составляющая, учитывающая движение термически возбужденных электронов, $\delta = \rho/\rho_0$ — относительное сжатие.

Для расчета потенциальных составляющих в зависимостях $E_{\mathbf{x}}(\delta)$ и $p_{\mathbf{x}}(\delta)$, как и в [20], выделено три участка: $0 \leq \delta < 1$, $1 \leq \delta \leq \delta_c$, $\delta > \delta_c$. В диапазоне $0 \leq \delta < 1$ используются зависимости того же вида, что и в [20]. Для всех изотопных составов энергия связи (кДж/моль) принимается одинаковой, т. е. $Q_s \overline{A} = \text{const}$ (где Q_s — энергия связи на 1 г вещества).

В диапазоне $1 \leq \delta \leq \delta_c$ потенциальное давление рассчитывается с использованием таблично заданной зависимости давления от относительного сжатия $p_{T_0}(\delta_i)$ на нормальной изотерме ($T_0 = 293$ K). Эта зависимость получена в результате аппроксимации экспериментальных данных (см. комментарий к рис. 4). Потенциальное давление при заданных значениях δ_i определяется при внесении поправок, учитывающих вклад тепловых составляющих в давление на нормальной изотерме:

$$p_{\mathbf{x}}(\delta_i) = p_{T_0}(\delta_i) - p_T(\delta_i, T_0).$$

Найденная таким образом табличная зависимость $p_{\rm x}(\delta_i)$ аппроксимируется кубическими сплайнами класса C^2 [21]. При определении коэффициентов сплайнов также используются производные на границах $\delta = 1$ и $\delta = \delta_c$, полученные следующим образом:

$$\frac{dp_{\mathbf{x}}}{d\delta}\Big|_{\delta=\delta_{c}} = p_{T_{0}}'(\delta_{c}) - \frac{dp_{T}(\delta, T_{0})}{d\delta}\Big|_{\delta=\delta_{c}},$$
$$\frac{dp_{\mathbf{x}}}{d\delta}\Big|_{\delta=1} = \left[\frac{B_{T_{0}}}{\delta} - \left(\frac{\partial p_{T}}{\partial\delta}\right)_{T}\right]\Big|_{\substack{\delta = 1 \\ T = T_{0}}},$$

где $B_{T_0} = \left. \delta \frac{\partial p(\delta, T_0)}{\partial \delta} \right|_{\delta=1}$ — изотермический объемный модуль, $p'_{T_0}(\delta_c) = \frac{\partial p(\delta, T_0)}{\partial \delta} \right|_{\delta=\delta_c}$.

Алгоритм расчета потенциальных составляющих при $\delta > \delta_c$ отличается от используемого в [20] только тем, что расчеты потенциального давления по модели ТФП [19] проводятся не по средним значениям \overline{A} и \overline{Z} соединения, а с использованием модели гетерогенной смеси. Один из компонентов смеси — это водород с $\overline{A}_{\rm H}$ и $\overline{Z}_{\rm H} = 1$ в данном соединении, другой компонент — литий с $\overline{A}_{\rm Li}$ и $\overline{Z}_{\rm Li} = 3$ в этом же соединении.

Выражение (1) позволяет описать свободную энергию ионов, когда вещество находится в твердом состоянии. Для описания термодинамических состояний соединений в широкой области изменения плотности, давления и температуры (от состояния, характерного для твердого тела, до состояния идеального газа) выражение (1) модифицировано, в частности, в него введены зависимости температур Дебая и Эйнштейна от температуры и плотности:

$$F_p(\delta, T) = \frac{c_{v0}}{\overline{A}} T \bigg\{ \alpha_{\rm D} \bigg[\ln(1 - \exp(-\theta_{\rm D} z(\delta, T))) - \frac{1}{3} D_3(\theta_{\rm D} z(\delta, T)) \bigg] + (1 - \alpha_{\rm D}) \ln[1 - \exp(-\theta_{\rm E} z(\delta, T))] \bigg\}, \quad (4)$$

$$z = \frac{\theta(\delta, T)}{T}, \ \theta(\delta, T) = \theta_{\rm D0}(\delta) \left(1 + \frac{T}{\psi_p(\delta)}\right)^{(q-1)/q},$$
$$\theta_{\rm D0}(\delta) = \exp\left(\int_1^{\delta} \Gamma_{p0}(\tau) \frac{d\tau}{\tau}\right),$$

где c_{v0} — параметр, имеющий смысл теплоемкости решетки одного моля вещества в разогретом твердом состоянии (классическая решетка без учета квантовых эффектов); $D_3(x) = x^2$

 $\frac{3}{x^3} \int_{0}^{x} \frac{t^3 dt}{e^t - 1}$ — функция Дебая третьего поряд-

ка, $\alpha_{\rm D}$ — коэффициент, определяющий вклад модели Дебая (в данной работе $\alpha_{\rm D} = 0.5$), $1 - \alpha_{\rm D}$ — коэффициент, определяющий вклад модели Эйнштейна.

В связи с тем, что в (4) температуры Дебая и Эйнштейна рассчитываются по функциям плотности и температуры, при описании выражением (4) экспериментальных и расчетных данных, характеризующих термодинамические свойства рассматриваемых соединений, для соотношений (2) получены значения констант $D_{\rm D} = 1680 \text{ K} \cdot (\Gamma/\text{моль})^{0.5}$ и $D_{\rm E} = 1300 \text{ K} \cdot (\Gamma/\text{моль})^{0.5}$.

Из (4) следуют выражения для расчета вклада атомов решетки в тепловую часть давления и энергии:

$$p_p(\delta, T) =$$

$$= D(z) \frac{q\psi_p(\delta)\Gamma_{p0}(\delta) + T\gamma_f}{\psi_p(\delta) + T} \rho_0 \delta T \frac{c_{v0}}{q\overline{A}}, \quad (5)$$

$$E_p(\delta, T) = D(z) \frac{q\psi_p(\delta) + T}{\psi_p(\delta) + T} T \frac{c_{v0}}{q\overline{A}}, \qquad (6)$$

$$D(z) = \alpha_{\rm D} D_3(\theta_{\rm D} z) + (1 - \alpha_{\rm D}) \frac{\theta_{\rm E} z}{\exp(\theta_{\rm E} z) - 1}.$$
 (7)

Здесь $\Gamma_{p0}(\delta)$ — функция, характеризующая зависимость коэффициента Грюнайзена ионов (решетки) «холодного» вещества от плотности (при $T \cong 0$); $\psi_p(\delta)$ — функция, приближенно характеризующая высоту потенциального барьера, который нужно преодолеть атому, чтобы уйти из узла решетки; γ_f — параметр, определяющий асимптотическое значение коэффициента Грюнайзена решетки при $T \to \infty$.

Параметр $q = 2c_{v0}/3R$ определен из условия

$$\frac{\partial E_p(\delta, T)}{\partial T}\Big|_{T \to \infty} = \frac{3R}{2\overline{A}} = \frac{c_{v0}}{\overline{A}q},$$

которое соответствует асимптотике идеального газа.

Зависимость коэффициента Грюнайзена ядер при T = 0 такая же, как в [20]. Введение параметра q в формулы (5) и (6) привело к другой связи между функциями $\psi_p(\delta)$ и $\Gamma_{p0}(\delta)$:

$$\frac{d\psi_p(\delta)}{\psi_p(\delta)} = \frac{1}{q-1} \left[q\Gamma_{p0}(\delta) - \gamma_f \right] \frac{d\delta}{\delta}.$$
 (8)

Выражение для свободной энергии электронов отличается от выражения из [20] только тем, что вместо молярной массы элемента A используется средняя молярная масса соединения \overline{A} , а коэффициент электронной теплоемкости соединений взят в виде произведения $\overline{\beta}_0 = \beta_0 \overline{A}$:

 $F_e(\delta, T) =$

$$= -\frac{3R}{2\overline{A}}Ty(\delta,T)\ln\left[1+\frac{\overline{\beta}_0T}{3R(\delta y(\delta,T))^{2/3}}\right].$$
 (9)

Для всех изотопных составов соединений коэффициент электронной теплоемкости (в единицах кДж/(моль · K^2)) одинаков. Следуюцие из (9) выражения для расчета давления, энергии и других термодинамических функций имеют такой же вид, как в [20].

С использованием представленных выше модельных соотношений разработано уравнение состояния для расчета термодинамических свойств соединений изотопов лития с изотопами водорода произвольного состава, в том числе имеющих примесь гидрооксида. Уравнение состояния содержит около 25 свободных (подбираемых) параметров. Эти параметры входят в выражения для потенциальных составляющих $p_x(\delta)$, $E_x(\delta)$ и составляющих, учитывающих вклад ионов $p_p(\delta, T)$, $E_p(\delta, T)$ и электронов $p_e(\delta, T)$, $E_e(\delta, T)$. Значения параметров определяются из условия наилучшего описания экспериментальных данных и результатов расчета термодинамических свойств гидридов лития. Для расчета термодинамических свойств конкретного соединения требуется задать его состав: доли атомов изотопов лития и водорода, массовую долю примеси гидрооксида лития.

При подборе параметров УРС использовались:

— экспериментальные данные, полученные при исследовании ударно-волновой сжимаемости [1–3] соединений разных составов, данные по измерению нормальных изотерм [6, 7] и изобар [8–10, 11];

— результаты расчетов МФП зависимостей изохорической теплоемкости от температуры на изохорах, зависимостей давления от плотности на нормальной изотерме для Li⁷H при p > 400 ГПа;

 — результаты расчетов по модели ТФП
 [19] зависимости давления от плотности на нулевой изотерме;

— результаты расчетов по модели ТФПК [19, 22] (модель ТФП с поправкой Копышева на учет вклада ядер) ударных адиабат сплошных и пористых образцов соединений, зависимостей изохорической теплоемкости от температуры на изохорах при $T \gtrsim 3$ эВ.

Технология подбора параметров УРС мало отличается от технологии, описанной в [23].

СРАВНЕНИЕ РЕЗУЛЬТАТОВ РАСЧЕТОВ ПО УРАВНЕНИЮ СОСТОЯНИЯ С ДАННЫМИ ЭКСПЕРИМЕНТОВ И РАСЧЕТОВ ПО ДРУГИМ МОДЕЛЯМ

В группе соединений изотопов лития с изотопами водорода термодинамические свойства соединения ${\rm Li}^6{\rm D}$ исследованы наиболее полно. Максимальное давление $\approx 1\,200$ ГПа достигнуто при исследовании ударных адиабат гидрида и дейтерида лития [2, 3]. Закономерности, связывающие термодинамические свойства этих соединений, позволяют использовать всю совокупность экспериментальных и расчетных данных как при разработке УРС ${\rm Li}^6{\rm D}$, так и при разработке УРС соединений других составов.

Рис. 6. Зависимость разности между скоростью фронта ударной волны и массовой скоростью от массовой скорости и зависимость давления от плотности на ударной адиабате пористого образца LiⁿD (Li⁷ — 92.5 %, Li⁶ — 7.5 %, $\rho_{00} = 0.84 \text{ г/см}^3$). В расчете принято $\rho_0 = 0.882 \text{ г/см}^3$

Рис. 7. Зависимость разности между скоростью фронта ударной волны и массовой скоростью от массовой скорости и зависимость давления от плотности на ударной адиабате сплошного $(1, 3 - \rho_0 = 0.783 \text{ г/см}^3)$ и пористого $(2, 4 - \rho_{00} = 0.739 \text{ г/см}^3)$ образцов Li⁷H (1, 2 - данная работа, 3, 4 - эксперимент [1])

В настоящее время одним из способов оценки точности и области применимости разработанных уравнений состояния является сравнение результатов расчетов по УРС с данными экспериментов и расчетов по другим уравнениям состояния, теоретическим моделям ит.д.

На рис. 6–11 приведены сравнения с экспериментальными данными [1, 3] результатов расчета по УРС данной работы зависимости разности между скоростью фронта ударной волны и массовой скоростью (D - u) от мас-

Рис. 8. Зависимость разности между скоростью фронта ударной волны и массовой скоростью от массовой скорости и зависимость давления от плотности на ударной адиабате пористого образца LiⁿH (Li⁷ — 92.5 %, Li⁶ — 7.5 %, $\rho_{00} = 0.739$ г/см³). В расчете принято $\rho_0 = 0.755$ г/см³

Рис. 9. Зависимость разности между скоростью фронта ударной волны и массовой скоростью от массовой скорости и зависимость давления от плотности на ударной адиабате пористого образца Li⁶H (Li⁷ — 4.5 %, Li⁶ — 95.5 %, $\rho_{00} = 0.666$ г/см³). В расчете принято $\rho_0 = 0.693$ г/см³

совой скорости u и зависимости давления от плотности $p(\rho)$ на ударных адиабатах сплошных и пористых образцов LiⁿD, Li⁷H, LiⁿH, Li⁶H, Li⁶D. Доли примеси гидрооксида приведены в процентах по массе.

На рис. 10 экспериментальная точка из [3] получена для $Li^{6}H$ с начальной плотностью 0.7 г/см³. По нашим расчетам $Li^{6}H$ будет иметь такую плотность с $\approx 3 \%$ гидрооксида. По этой причине расчет ударной адиабаты выполнен с указанным содержанием LiOH.

На рис. 11 приведена ударная адиабата, рассчитанная для Li⁶D с 2 % примеси гидрооксида. В работе [1] отмечается, что исследованные образцы могли содержать такое количество примеси. Расчет хорошо согласуется с экспериментом.

Данные на рис. 6–11 показывают, что рас-

Рис. 10. Зависимость разности между скоростью фронта ударной волны и массовой скоростью от массовой скорости и зависимость давления от плотности на ударной адиабате сплошного образца Li⁶H (Li⁷ — 4.5 %, Li⁶ — 95.5 %). В расчете принято $\rho_0 = 0.7 \text{ г/см}^3$

Рис. 11. Зависимость разности между скоростью фронта ударной волны и массовой скоростью от массовой скорости и зависимость давления от плотности на ударной адиабате пористого образца Li⁶D (Li⁷ — 4.5 %, Li⁶ — 95.5 %, $\rho_{00} = 0.579 \, \mathrm{r/cm^3}$). В расчете принято $\rho_0 = 0.803 \, \mathrm{r/cm^3}$

считанные по УРС зависимости (D-u) от u и p от ρ для исследованных соединений хорошо согласуются с экспериментальными данными.

На рис. 12 в координатах давление — плотность показаны ударные адиабаты, рас-

считанные для соединения Li⁶D по УРС данной работы и по модели ТФПК [19, 22], а также рассчитанные по УРС зависимости $p(\rho)$ на линии плавления и на изотермах 0, 2 и 12 эВ. Расчеты выполнены для образцов Li⁶D нормаль-

Рис. 12. Зависимость давления от плотности на ударной адиабате сплошного и пористого образцов Li⁶D (Li⁷ — 4.5 %, Li⁶ — 95.5 %), на линии плавления и на изотермах 0, 2, 12 эВ:

сплошные линии — данная работа, штриховые — ТФПК, гетерогенная смесь, \blacktriangle — эксперимент [2], $\rho_0 = 0.793 \text{ г/см}^3$, о — эксперимент [1], $\rho_0 = 0.798 \text{ г/см}^3$

ной плотности ($\rho_0 = 0.795 \text{ г/см}^3$) и для пористых образцов ($\rho_{00} = 0.4 \text{ и } 0.2 \text{ г/см}^3$). Видно, что расчеты по УРС хорошо описывают эксперименты [1, 2] по исследованию ударной адиабаты сплошного соединения Li⁶D, а в области больших давлений хорошо согласуются с расчетами по ТФПК.

На рис. 13 и 14 приведены зависимости энтропи
иSи молярной изобарической теплоем-

Рис. 13. Зависимость энтропии LiⁿH, LiⁿD, LiⁿT (Li⁷ — 92.5 %, Li⁶ — 7.5 %) от температуры при нормальном давлении:

линии — расчет по УРС данной работы: $1 - \text{Li}^{n}\text{H}$, $2 - \text{Li}^{n}\text{D}$, $3 - \text{Li}^{n}\text{T}$; данные по энтропии: $4 - \text{Li}^{n}\text{H}$ [11, 12], $5 - \text{Li}^{n}\text{D}$ [11], $6 - \text{Li}^{n}\text{T}$ [11]

Рис. 14. Зависимость удельной изобарической теплоемкости LiⁿH, LiⁿD, LiⁿT (Li⁷ — 92.5 %, Li⁶ — 7.5 %) от температуры при нормальном давлении:

расчет по УРС данной работы: $1 - \text{Li}^{n}\text{H}$, $2 - \text{Li}^{n}\text{D}$, $3 - \text{Li}^{n}\text{T}$; эксперимент: $4 - \text{Li}^{n}\text{D}$ [8], $5 - \text{Li}^{n}\text{H}$ [8], $6 - \text{Li}^{n}\text{H}$ [9]; данные [11] по теплоемкости: $7 - \text{Li}^{n}\text{H}$, $8 - \text{Li}^{n}\text{D}$, $9 - \text{Li}^{n}\text{T}$; данные [12] по теплоемкости: $10 - \text{Li}^{n}\text{H}$

кости c_p от температуры, рассчитанные для ${\rm Li}^n{\rm H}$, ${\rm Li}^n{\rm D}$, ${\rm Li}^n{\rm T}$ по УРС данной работы, в сравнении с данными из [8, 9, 11, 12]. В описываемой модели УРС не учитывается изменение термодинамических функций при плавлении, и поэтому хорошее согласие с данными из других работ наблюдается только для твердой фазы ($T \leq 900$ K).

На рис. 15 представлены рассчитанные по УРС данной работы изохорические молярные теплоемкости для Li⁷H на изохорах $\delta \approx 0.983$,

Рис. 15. Зависимость удельной изохорической теплоемкости Li⁷T, Li⁷H от температуры при различных значениях плотности на изохорах

Рис. 16. Зависимость изохорической теплоемкости Li^6D ($Li^7 - 4.5 \%$, $Li^6 - 95.5 \%$) от температуры на изохорах:

линии — УРС данной работы, точки — модель ТФПК [19, 22]

1.115, 1.68, 2.7 и для Li⁷T на изохоре $\delta \approx 0.983$. Там же показаны зависимости $c_v(T)$, рассчитанные по МФП. Ввод в модель УРС соотношений Дебая и Эйнштейна для расчета теплоемкости (см. (4)) позволил хорошо согласовать расчеты по УРС с данными, полученными нами в расчетах МФП.

На рис. 16 приведены зависимости изохорической теплоемкости Li^6D от температуры на изохорах $\rho = 0.01\rho_0, 0.1\rho_0, \rho_0, 10\rho_0, 100\rho_0,$ рассчитанные по УРС данной работы и по модели ТФПК [19, 22] в области ее применимости. В расчетах по ТФПК соединение Li^6D рассматривалось как гетерогенная смесь изотопа лития с изотопом водорода. Полученные результаты расчетов согласуются друг с другом.

Для оценки положения на фазовой диаграмме границы перехода твердое тело — жидкость (линии плавления) в [24] предложено соотношение

$$T_m = C_m R^2 \frac{\partial^2 F(T_m, \rho)}{\partial R^2}, \qquad (10)$$

где T_m — температура плавления, C_m — константа, характеризующая свойства вещества, R — радиус Вигнера — Зейтца, $F(T_m, \rho)$ — зависимость свободной энергии от температуры и плотности на линии плавления.

При большой плотности и сравнительно низкой температуре, в том числе и при температуре плавления, в свободной энергии преобладает вклад вырожденного электронного газа, для которого $F_e(T,\rho) \sim \rho^{2/3}/ \sim R^{-2}$. Таким образом, при большой плотности, согласно соотношению (10), $T_m \sim 1/R^2 \sim \rho^{2/3}$. Модель однокомпонентной плазмы [25, 26] при большой плотности дает другое предельное соотношение: $T_m \sim \rho^{1/3}$. Для обеспечения такого предела в (10) вместо R^2 введен множитель R^3 :

$$T_m = C_m R^3 \frac{\partial^2 F(T_m, \rho)}{\partial R^2}.$$
 (11)

В выражениях (10) и (11) удобнее радиус Вигнера — Зейтца R заменить на плотность вещества ρ , используя связь между ними $R \sim \rho^{-1/3}$. Тогда выражение (10) примет вид

$$T_m = \tilde{C}_m \left(3 \frac{\partial p(T_m, \rho)}{\partial \rho} - 2 \frac{p(T_m, \rho)}{\rho} \right), \quad (12)$$

а выражение (11) —

$$T_m = \frac{\tilde{C}_m}{\rho^{1/3}} \left(3 \frac{\partial p(T_m, \rho)}{\partial \rho} - 2 \frac{p(T_m, \rho)}{\rho} \right).$$
(13)

Константа \tilde{C}_m позволяет нормировать линию плавления на любую точку (в данной работе — на точку плавления при атмосферном давлении, $T_m = 965 \text{ K}, \, \delta_m = 0.893 \text{ г/см}^3$).

На рис. 17 для соединения $Li^n D$ (Li^7 — 92.5 %, Li^6 — 7.5 %) приведены рассчитанные по (12) и (13) с использованием УРС данной работы зависимости температуры от давления на ударной адиабате и на линии плавления, а также экспериментальные данные [10, 11].

Кроме того, на рисунке представлены результаты расчета из работы [27] линии плавления LiH по методу молекулярно-динамического моделирования и аппроксимация этих расчетов зависимостью

$$T_m(p) = 790[1 + 0.3911(p + 0.28)]^{0.3221} \times \exp[-0.001373(p + 0.28)].$$
(14)

Видно, что соотношение (10) из [24] предсказывает более высокие значения температуры плавления. В [10] зарегистрирована экспериментальная точка на линии плавления: $p \approx$ 4.2 ГПа и $T \approx 1330$ К. Расчет по (11) при $p \approx 4.2$ ГПа дает более низкую температуру: $T \approx 1240$ К. Большое отличие результатов расчетов, представленных на рис. 17, указывает на необходимость продолжения исследований этого фазового перехода.

Рис. 17. Зависимость температуры от давления на ударной адиабате (8) и линии плавления (1-7):

1 — данная работа, 2 — начало плавления на ударной адиабате LiⁿD — $T_m = 2760$ K, $\rho_m = 1.72$ г/см³, $p_m = 83$ ГПа, 3 — [24], 4, 5 — эксперимент LiⁿD [10, 11], 6 — молекулярно-динамическое моделирование для LiH [27], 7 — аппроксимация для LiH [27]

ЗАКЛЮЧЕНИЕ

Предложен вариант уравнения состояния для гидридов лития. Уравнение состояния разработано на основе ранее опубликованной авторами модели УРС для металлов. Принятые в модели соотношения для расчета термодинамических свойств изотопных модификаций гидрида лития имеют общий характер и могут быть использованы для других подобных соединений.

С использованием модельных соотношений, экспериментальных и расчетных данных, характеризующих термодинамические свойства гидридов лития, разработано уравнение состояния, позволяющее описывать термодинамические свойства этих соединений. Сравнение расчетов по УРС с данными экспериментов и расчетов по другим моделям подтверждает обоснованность и приемлемую точность используемых модельных соотношений.

Уравнение состояния рекомендуется к применению как в области сравнительно невысоких давлений и температур, доступной для экспериментальных исследований, так и в области высоких давлений, температур и плотностей, состояния в которой пока могут быть оценены только по теоретическим моделям УРС.

Авторы выражают искреннюю благодарность рецензенту за ценные замечания, способствовавшие улучшению данной работы.

ЛИТЕРАТУРА

- 1. Marsh S. P. Hugoniot Equations of State of Li⁶H, Li⁶D, LiⁿH and LiⁿD (U) // Los Alamos Scientific Laboratory of the University of California; Report LA-4942. — 1972. http://dx.doi.org/10.2172/4280032.
- Ragan III C. E. Shock compression measurements at 1 to 7 TPa // Phys. Rev. A. 1982. V. 25, N 6. — P. 3360–3375.
- Ragan III C. E. Shock-wave experiments at threefold compression // Phys. Rev. A. — 1984. — V. 29, N 3. — P. 1391–1402.
- Anderson J.L., Nasise J., Philipson K., Pretzel F. E. Isotopic effects on the thermal expansion of lithium hydride // J. Phys. Chem. Solids. — 1970. — V. 31. — P. 613–618.
- Hama J., Suito K., Kawakami N. Firstprinciples calculation of the shock-wave equation of state of isotopic lithium hydrides // Phys. Rev. B. — 1989. — V. 39, N 5. — P. 3351–3360.
- Loubeyre P., Le Toullec R., Hanfland M., Ulivi L., Datchi F., Hausermann D. Equation of state of ⁷LiH and ⁷LiD from *x*-ray diffraction to 94 GPa // Phys. Rev. B. — 1998. — V. 57, N 17. — P. 10403–10406.
- Lazicki A., Loubeyre P., Occelli F., Hemley R. J., Mezouar M. Static compression of LiH to 250 GPa // Phys. Rev. B. — 2012. — V. 85. — 054103(1–6).
- Jat R. A., Parida S. C., Krishnan K., Anand N. S., Sawant S. G., Agarwal R., Singh Z., Aggarwal S. K., Venugopal V. Heat capacities of polycrystalline ⁿLiH and ⁿLiD by differential scanning calorimetric method // J. Alloys and Compounds. — 2010. — V. 505. — P. 309–314.
- Welch F. H. Lithium hydride properties // Aircraft Nuclear Propulsion Department DC-61-3-73. — 1961.
- Zhang J., Zhao Yu., Wang Yu., Daemen L. Thermal equations of state and melting of lithium deuteride under high pressure // J. Appl. Phys. — 2008. — V. 103. — 093513(1–4).
- Якимович К. А., Мозговой А. Г. Изотопные модификации гидрида лития и их растворы с литием. Теплофизические и физико-химические свойства. — М.: Физматлит, 2006.
- Термодинамические свойства индивидуальных веществ: справочник / под ред. В. П. Глушко. М.: Наука, 1982. Т. IV, кн. 2.
- Savrasov S. Yu., Savrasov D. Yu. Fullpotential linear-muffin-tin-orbital method for calculating total energies and forces // Phys. Rev. B. — 1992. — V. 46, N 19. — P. 12181–12195.
- Savrasov S. Y., Savrasov D. Y., Andersen O. K. Linear-response calculations of electronphonon interactions // Phys. Rev. Lett. — 1994. — V. 72, N 3. — P. 372–375.
- Savrasov S. Y., Savrasov D. Y. Electronphonon interactions and related physical properties of metals from linear-response theory // Phys. Rev. B. — 1996. — V. 54. — P. 16487–16501.

- Blöchl P. E., Jepsen O., Andersen O. K. Improved tetrahedron method for Brillouin-zone integrations // Phys. Rev. B. 1994. V. 49. P. 16223–16234.
- Vosko S. H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculation: a critical analysis // Can. J. Phys. — 1980. — V. 58, N 8. — P. 1200–1211.
- Perdew J. P., Burke K., Wang Y. Generalized gradient approximation for the exchangecorrelation hole of a many-electron system // Phys. Rev. B. — 1996. — V. 54. — P. 16533– 16539.
- 19. Калиткин Н. Н., Кузьмина Л. В. Таблицы термодинамических функций вещества при высокой концентрации энергии. М., 1975. (Препр. / РАН. ИПМ; № 35).
- Гордеев Д. Г., Гударенко Л. Ф., Каякин А. А., Куделькин В. Г. Модель уравнения состояния металлов с эффективным учетом ионизации. Уравнения состояния Та, W, Al, Be // Физика горения и взрыва. — 2013. — Т. 49, № 1. — С. 106–120.
- Завьялов Ю. С., Квасов Б. И., Мирошниченко В. К. Методы сплайн-функций. — М.: Наука, 1980.

- Копышев В. П. О термодинамике ядер одноатомного вещества. — М., 1978. — (Препр. / РАН. ИПМ; № 59).
- Гордеев Д. Г., Гударенко Л. Ф., Жерноклетов М. В., Куделькин В. Г., Мочалов М. А. Полуэмпирическое уравнение состояния металлов. Уравнение состояния алюминия // Физика горения и взрыва. — 2008. — Т. 44, № 2. — С. 61–75.
- Wang Y., Ahuja R., Johansson B. Melting of iron and other metals at earth's core conditions: A simplified computational approach // Phys. Rev. B. — 2001. — V. 65. — 014104(1–3).
- Hansen J. P. Statistical mechanics of dense ionized matter. I. Equilibrium properties of the classical one-component plasma // Phys. Rev. A. — 1973. — V. 8, N 6. — P. 3096–3109.
- Pollock E. L., Hansen J. P. Statistical mechanics of dense ionized matter. II. Equilibrium properties and melting transition of the crystal-lized one-component plasma // Phys. Rev. A. 1973. V. 8, N 6. P. 3110–3122.
- Ogitsu T., Schwegler E., Gygi F., Galli G. Melting of lithium hydride under pressure // Phys. Rev. Lett. — 2003. — V. 91, N 17. — 175502(1-4).

Поступила в редакцию 12/VII 2013 г., в окончательном варианте — 5/II 2014 г.