2010. Том 51, № 3

Май – июнь

C. 537 – 543

УДК 541.49:548.736:542.952.6

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ФОТОЛЮМИНЕСЦЕНЦИЯ ОПТИЧЕСКИ-АКТИВНОГО КОМПЛЕКСА [ZnL¹Cl₂], ГДЕ L¹ = ПИРАЗОЛИЛХИНОЛИН — ПРОИЗВОДНОЕ МОНОТЕРПЕНОИДА (+)-3-КАРЕНА

© 2010 С.В. Ларионов¹*, З.А. Савельева¹, Р.Ф. Клевцова¹, Л.А. Глинская¹, Е.М. Усков¹, С.А. Попов², А.В. Ткачёв²

¹Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

²Учреждение Российской академии наук Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН

Статья поступила 15 мая 2009 г.

Получен оптически-активный комплекс $[ZnL^1Cl_2]$ (I), где L^1 = пиразолилхинолин — производное монотерпеноида (+)-3-карена. Выращены монокристаллы соединения I и по дифракционным рентгеновским данным (дифрактометр X8 APEX, Мо K_{α} -излучение, 3031 F_{hkl}) определена его кристаллическая структура. Кристаллы I моноклинные, размеры элементарной ячейки: a = 8,4189(10), b = 12,7194(11), c = 9,7652(12) Å, $\beta = 111,318(3)^\circ, V = 974,14(19)$ Å³, $Z = 2, d_x = 1,499$ г/см³, пр. гр. $P2_1$. Структура комплекса I построена из дискретных одноядерных молекул. При координации атомов Cl и двух атомов N бидентатного циклообразующего лиганда L¹ у Zn образуется искаженный тетраэдрический полиэдр Cl₂N₂. В молекуле комплекса фрагмент, состоящий из пятичленных пиразольного и хелатного циклов, пятичленного карбоцикла, а также двух шестичленных циклов хинолина, имеет практически плоское строение. Комплекс I в твердой фазе обладает яркой белой фотолюминесценцией при 300 К и $\lambda_{воз6} = 365$ нм в области 400—700 нм с $\lambda_{max} = 490$ нм.

Ключевые слова: синтез, комплекс Zn(II), кристаллическая и молекулярная структура, терпеноиды, хиральность, фотолюминесценция.

При синтезе и исследовании структуры новых координационных соединений, имеющих перспективные функциональные свойства, большое внимание уделяется получению комплексов, проявляющих люминесценцию. Предметом многочисленных исследований являются люминесцирующие комплексы лантаноидов [1—3], алюминия [4] и платиновых металлов [5]. В связи с поиском хемосенсоров на ионы Zn^{2+} при синтезе люминесцирующих координационных соединений значительный интерес вызывают комплексы Zn(II) [6, 7]. В число органических лигандов, образующих с ионами Zn^{2+} люминесцирующие комплексы, входят реагенты, имеющие фрагменты различных азотистых гетероциклов — пиридина [8, 9], хинолина [10, 11], бензимидазола [12, 13]. В работе [14] для синтеза комплекса Zn(II) использовали реагент, включающий фрагменты как пиразола, так и бензимидазола. Мы получили комплекс Zn(II) с ахиральным 2-(3,5-диметилпиразол-1-ил)-4-метилхинолином (L) состава ZnLCl₂, обладающий при 300 К яркой фотолюминесценцией (ФЛМ) в синей области спектра [15], а также исследовали его структуру методом PCA. Этот результат послужил стимулом для получения люминесцирующего комплекса Zn(II) с хиральным лигандом, имеющим, как и L, фрагменты пиразола и хинолина.

^{*} E-mail: lar@niic.nsc.ru

Цель данной работы — синтез, изучение кристаллической и молекулярной структуры, а также люминесцентных свойств комплекса ZnCl₂ с хиральным (3bS, 4aR)-3,4,4-триметил-1-(4-метилхинолин-2-ил)-3b,4,4a,5-тетрагидро-1H-циклопропа[3,4]циклопента[1,2-с]пиразолом (L¹) — производным природного монотерпеноида (+)-3-карена.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реагент L¹ получили по методике [16], $[\alpha]^{21}$ + 323 (с 2,15, CHCl₃). Для синтеза комплекса использовали ZnCl₂ квалификации ЧДА, EtOH — ректификат, CH₂Cl₂ квалификации ХЧ.

Синтез дихлоро{(3bS, 4aR)-3,4,4-триметил-1-(4-метил-хинолин-2-ил)-3b,4,4a,5-тетрагидро-1Н-циклопропа[3,4]циклопента[1,2-с]пиразол}цинка(II), [ZnL¹Cl₂] (I). К раствору 0,027 г (0,2 ммоля) ZnCl₂ в 4 мл ЕtOH добавляли раствор 0,060 г (0,2 ммоля) L¹ в смеси 3 мл EtOH и 6 мл CH₂Cl₂. Через ~1 ч начал выпадать белый осадок. Смесь оставляли на ночь. На следующий день растворитель отгоняли потоком воздуха до минимального объема, осадок отфильтровывали с отсасыванием, промывали EtOH, сушили на воздухе. Выход 0,060 г (68 %), $[\alpha]_{589}^{25}$ + 52,8 (с 0,5, CH₂Cl₂). Найдено, %: С 54,5, Н 4,9, N 9,4, Cl 16,7. Для C₂₀H₂₁N₃Cl₂Zn вычислено, %: С 54,6, Н 4,8, N 9,6, Cl 16,3. Монокристалл комплекса I для PCA отобрали из осадка, полученного при синтезе.

Микроанализы выполнены на анализаторах Hewlett Packard 185 и Carlo Erba 1106. Спектры ФЛМ снимали на спектрометре СДЛ-1. Для возбуждения ФЛМ применяли ртутную лампу типа ДРШ-250 с фильтром на 365 нм. Спектры записывали с помощью фотоэлектронного умножителя ФЭУ-62 при 300 К в стандартных условиях. Образцы готовили в виде таблеток одинаковой площади, используя поликристаллы L¹ и I.

Для РСА соединения I параметры элементарной ячейки и интенсивности рефлексов измеряли при низкой температуре (150 K) на автодифрактометре Bruker X8 Apex CCD, оснащенном двухкоординатным детектором, по стандартной методике (MoK_{α} -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор). Кристаллографические характеристики, детали рентгеновского дифракционного эксперимента и уточнения структуры I приведены в табл. 1. Пространственная группа кристалла соединения I выбрана на основе анализа погасаний в массиве интенсивностей, подкрепленного проведенными расчетами. Структура решена прямым методом и уточнена полноматричным МНК по F^2 в анизотропном для неводородных атомов приближении по комплексу программ SHELXL-97 [17]. Позиции атомов H рассчитаны геометрически и включены в уточнение в изотропном приближении совместно с неводородными атомами. Окончательные значения основных межатомных расстояний и валентных углов приведены в табл. 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджской базе структурных данных (СССС № 724112) и могут быть получены у авторов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При взаимодействии ZnCl₂ с хиральным азотистым гетероциклом L¹ в смешанном растворителе EtOH—CH₂Cl₂ при мольном соотношении Zn:L¹ = 1:1 ($c_{Zn} \sim 0,015$ моль/л) выделено оптически активное правовращающее координационное соединение I состава ZnL¹Cl₂.

Таблица 1

Кристаллографические характеристики, детали эксперимента и уточнения структуры комплекса I

	C. H. N. Cl. 7n
Эмпирическая формула Монокундриод морго	420.67
масса	439,07
Сингония	Моноклинная
Пространственная группа	$P2_1$
<i>a</i> , <i>b</i> , <i>c</i> , Å; β, град.	8,4189(10), 12,7194(11), 9,7652(12); 111,318(3)
$V, Å^3$	974,14(19)
<i>Ζ</i> ; ρ _{выч} , г/см ³	2; 1,499
μ , mm ⁻¹	1,543
Размеры кристалла, мм	0,42×0,11×0,08
Область сканирования, θ, град.	2,24 — 25,00
Число измерен. / независ. отражений	6262 / 3031
<i>R</i> (int)	0,0436
Число отражений с $I > 2\sigma(I)$	2552
Число уточняемых параметров	260
GOOF по F^2	0,975
R -фактор, $I > 2\sigma(I)$	
$R_1; wR_2$	0,0379; 0,0598
R -фактор (по всем I_{hkl})	
$R_1; wR_2$	0,0512; 0,0633
Остаточная электронная плотность (max / min), e/Å ³	0,463 / -0,331
Абсолютный структурный параметр	0,029(15)

Таблица 2

Основные межатомные расстояния d (Å) и валентные углы ω (град.) в структуре комплекса I

Связь	d	Связь	d	Связь	d
Zn(1)—N(2)	2,040(4)	C(1)—C(2)	1,408(6)	C(11)—C(12)	1,370(6)
Zn(1) - N(1)	2,067(4)	C(2)—C(3)	1,372(6)	C(11)—C(14)	1,479(6)
Zn(1)— $Cl(2)$	2,185(1)	C(3)—C(4)	1,431(7)	C(12)—C(13)	1,408(7)
Zn(1)— $Cl(1)$	2,229(1)	C(3)—C(10)	1,479(6)	C(12)—C(16)	1,485(6)
N(1)—C(1)	1,312(6)	C(4)—C(5)	1,414(7)	C(13)—C(20)	1,493(7)
N(1)—C(5)	1,388(5)	C(4)—C(9)	1,417(6)	C(14)—C(15)	1,549(6)
N(2)—C(13)	1,331(6)	C(5)—C(6)	1,407(7)	C(15)—C(17)	1,511(6)
N(2)—N(3)	1,377(6)	C(6)—C(7)	1,365(6)	C(15)—C(16)	1,542(6)
N(3)—C(11)	1,375(6)	C(7)—C(8)	1,399(7)	C(16)—C(17)	1,529(6)
N(3)—C(1)	1,407(5)	C(8)—C(9)	1,348(6)	C(17)—C(18)	1,506(7)
				C(17)—C(19)	1,524(6)
Угол	ω	Угол	ω	Угол	ω
N(2)—Zn(1)—N(1)	79,3(1)	C(5)—N(1)—Zn(1)	126,6(4)	N(3)—C(1)—C(2)	121,2(5)
N(2)— $Zn(1)$ — $Cl(2)$	119,0(1)	C(13) - N(2) - N(3)	107,5(4)	N(1) - C(5) - C(6)	118,1(5)
N(1)— $Zn(1)$ — $Cl(2)$	118,8(1)	C(13) - N(2) - Zn(1)	141,3(4)	N(1) - C(5) - C(4)	121,4(5)
N(2)— $Zn(1)$ — $Cl(1)$	109,4(1)	N(3) - N(2) - Zn(1)	110,8(3)	N(3) - C(11) - C(14)	137,9(4)
N(1)— $Zn(1)$ — $Cl(1)$	105,0(1)	C(11) - N(3) - N(2)	109,5(4)	C(11) - C(12) - C(13)	107,1(4)
Cl(2)— $Zn(1)$ — $Cl(1)$	118,48(5)	C(11) - N(3) - C(1)	131,6(5)	C(11) - C(12) - C(16)	110,6(4)
C(1) - N(1) - C(5)	118,1(4)	N(2) - N(3) - C(1)	118,9(5)	C(13)—C(12)—C(16)	142,0(4)
C(1) - N(1) - Zn(1)	114,5(3)	N(1)-C(1)-N(3)	114,6(5)	N(2) - C(13) - C(12)	109,1(5)
		N(1) - C(1) - C(2)	124,2(4)	N(2) - C(13) - C(20)	120,9(5)

Puc. 1. Строение ацентричной молекулы комплекса I в двух проекциях с нумерацией неводородных атомов. Термические эллипсоиды показаны на уровне 50%-й вероятности

Кристаллическая структура I построена из дискретных одноядерных ацентричных молекул. Строение молекулы в двух проекциях показано на рис. 1. В результате координации к иону Zn²⁺ двух атомов N бидентатного циклообразующего лиганда L¹ замыкается пятичленный хелатный цикл ZnN₃C. Расстояния Zn—N (2,040(4) и 2,067(4) Å) различаются незначительно. Более короткой является связь атома Zn с атомом N пиразольного фрагмента. В координационную сферу атома Zn входят также два атома Cl с близкими расстояниями Zn—Cl, равными 2,185(1) и 2,229(1) Å. В результате образуется координационный узел ZnCl₂N₂. Полиэдр Cl₂N₂ имеет форму искаженного тетраэдра: величины валентных углов при атоме Zn изменяются в пределах 79,30—118,48°, их среднее значение равно 108,36°. Аналогичный полиэдр имеется в молекуле соединения ZnLCl₂ (II), содержащего ахиральный L [15]. Длины связей в координационном узле хирального I близки к таковым для соединения II [15].

В молекуле комплекса I фрагмент из пяти циклов, состоящий из пятичленных пиразольного и хелатного циклов, пятичленного карбоцикла, а также двух шестичленных циклов хинолина, имеет практически плоское строение. Отклонение от среднеквадратичной плоскости всех атомов этих циклов составляет 0,094(4) Å. Атомы Cl(1) и Cl(2) отклоняются по разные стороны от этой плоскости на 2,457(4) и 1,158(4) Å соответственно. Среднее отклонение атомов циклов хинолина от плоскости этих циклов равно 0,022(4) Å. Плоскость пятичленного карбоцикла (среднее отклонение его атомов равно 0,004(3) Å) составляет угол 113,4(3)° с примыкающим к ней посредством общих ребер C(15)—C(16) диметилциклопропановым фрагментом.

Межмолекулярные расстояния в кристаллической структуре I находятся в пределах вандер-ваальсовых взаимодействий и слабых водородных связей Cl...H—C. С учетом выявленных контактов рассмотрена упаковка молекул в кристаллической структуре на плоскость (010), представленная на рис. 2, *а*. Молекулы в структуре размножены двойными винтовыми осями 2_I, их плоские фрагменты расположены под углом 9,5°, т.е. приблизительно параллельно друг

Рис. 2. Упаковка молекул в структуре I в проекции на плоскость (010) — *а* (штриховыми линиями показаны водородные связи С1...Н—С); перекрывание хинолиновых циклов с пятичленными карбоциклами соседних молекул — *б*

другу. Среднее межплоскостное расстояние (*d*) между плоскими фрагментами молекул, которые размножены осями 2₁, расположенными в вершинах элементарной ячейки, равно ~3,70 Å. Те же фрагменты молекул около осей 2₁ при z = 0,5 находятся на расстоянии ~6,0 Å. Именно в этом межплоскостном пространстве расположены диметилциклопропановые фрагменты L¹.

Для молекул, расположенных на расстоянии d~3,70 Å, имеется возможность перекрывания некоторых циклов плоских фрагментов и возникновения между ними π — π -взаимодействия. Анализ такой возможности показал, что перекрываются циклы хинолина и пятичленные карбоциклы соседних молекул (см. рис. 2, δ). Однако величина d (~3,70 Å), значительно превышающая оптимальное расстояние для π — π -взаимодействия [18, 19], а также нарушение параллельности циклов свидетельствуют о вероятном лишь очень слабом π — π -взаимодействии. Дополнительно можно говорить о наличии контактов C(9)...C(11) 3,397(7), C(4)...C(11) 3,663(8) и C(4)...C(12) 3,676(7) Å.

Сопоставление кристаллических структур I и II [15] показало, что разница в строении L и L¹ (наличие в L¹ пятичленного карбоцикла и диметилциклопропанового цикла) существенно изменяет структуру I по сравнению со структурой комплекса II. Во-первых, структура I становится более "рыхлой" за счет выступающих из плоских фрагментов молекул диметилциклопропановых циклов (для II $\rho = 1,605$ г/см³ против 1,499 г/см³ для I). Следствием этого является увеличение минимального расстояния Zn...Zn: оно равно 7,169(2) Å в структуре II и 7,994(2) Å в I. Во-вторых, наблюдается различие в расположении молекул лигандов: в структуре II плоские молекулы L распределены равномерно с одинаковыми межплоскостными расстояниями

 $(d \sim 3.5 \text{ Å})$, а в структуре нового комплекса I расстояния между плоскими фрагментами молекул L¹ существенно отличаются, причем они значительно превышают d в II.

Реагент L¹ обладает сравнительно слабой ФЛМ в области спектра 400-700 нм (рис. 3). В области длин волн $\lambda = 450$ —550 нм наблюдается слабо выраженный максимум. В отличие от L¹ комплекс I обладает яркой ФЛМ в широкой области спектра 400-

700 нм с λ_{max} = 490 нм (см. рис. 3). Ширина полосы на 1/2 высоты равна 160 нм. Интенсивность (I) голубой компоненты спектра при $\lambda = 450$ нм составляет ≈ 76 %, I зеленой компоненты при $\lambda = 520$ нм составляет ≈ 90 %, а *I* красной компоненты при $\lambda = 607$ нм — около 42 % от *I* спектра при λ_{max}. Излучение комплекса I воспринимается как источник света с белым свечением. Этот факт очень интересен, так как число известных комплексов Zn(II), обладающих белым свечением, незначительно. Так, большое внимание привлек хелат Zn(II) с 2-(2-гидроксифенил)бензотиазолом [20, 21], обладающий белой электролюминесценцией и зеленовато-белой ФЛМ $(\lambda_{max} = 524 \text{ HM}).$

Важную роль в проявлении ФЛМ комплексами I и II играет наличие в лигандах фрагментов хинолина [10, 11, 22, 23]. Этот фрагмент является эффективным флуорофором [23]. Авторы [23] полагают, что образование хелатного цикла при комплексообразовании иона Zn²⁺ с лигандом, имеющим хинолиновый фрагмент, способствует усилению ФЛМ, так как при образовании связи Zn—N свободная электронная пара атома N теряет возможность взаимодействовать с π -системой лиганда. Такое взаимодействие обычно тушит люминесценцию.

Сравнение *I* ФЛМ комплекса I при $\lambda_{max} = 490$ нм с *I* лиганда L¹ при $\lambda = 490$ нм показало, что I ФЛМ комплекса I выше примерно в 7,4 раза. Интересно, что положение максимумов в спектре Φ ЛМ лиганда L¹ и комплекса I близкое. В случае L и комплекса II при комплексообразовании наблюдается сильный гипсохромный сдвиг полосы в спектре ФЛМ [15]. Следует отметить, что *I* ФЛМ комплекса I при $\lambda_{max} = 490$ нм примерно в 2 раза выше, чем *I* ФЛМ комплекса II при $\lambda_{max} = 403$ нм.

Большое отличие в характере спектров ФЛМ комплексов I и II можно объяснить разницей в строении L^1 и L, а также различием в кристаллических структурах комплексов. В составе хирального L¹, по сравнению с L, имеются два дополнительных карбоцикла. В структуре I хелатный цикл и четыре пятичленных и шестичленных цикла образуют практически плоский "жесткий" фрагмент большего размера, чем в структуре II (хелатный цикл, два шестичленных цикла и один пятичленный цикл). Это способствует батохромному сдвигу полосы в спектре ФЛМ комплекса I по сравнению со спектром комплекса II. Более "рыхлая" кристаллическая структура оптически активного комплекса I способствует меньшему взаимодействию молекул, и, следовательно, повышению интенсивности ФЛМ за счет ослабления процессов тушения ФЛМ.

Проявление яркой белой ФЛМ оптически активным комплексом I стимулирует продолжение работы по синтезу, исследованию структуры и свойств комплексов Zn(II) с другими хиральными производными природных терпеноидов.

Авторы благодарят Д.Ю. Наумова за проведение рентгеноструктурного эксперимента.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wang K.Z., Li L.J., Liu W.M. et al. // Mater. Res. Bull. 1996. 31. P. 3993.
- 2. De Sa J.F., Malta O.L., de Mello Donega C. et al. // Coord. Chem. Rev. 2000. 196. P.165.
- 3. Каткова М.А., Витухновский А.Г., Бочкарев М.Н. // Усп. химии. 2005. 74. С. 1193. [Russ. Chem. Rev. - 2005. - 74. - P. 1089 (Engl. Transl.)].

- 4. Fujii A., Ohmori Y., Morishima C. et al. // Synth. Metals. 1995. 71. P. 2015.
- 5. Richter M.M.// Chem. Rev. 2004. 104. P. 3003.
- 6. Lim N.C., Freake H.C., Brückner C. // Chem. Eur. J. 2005. 11. P. 38.
- 7. *Метелица А.В., Бурлов А.С., Безуглый С.О. и др.* // Координац. химия. 2006. **32**. Р. 894. [Russ. J. Coord. Chem. 2006. **32**. Р. 858 (Engl. Transl.)].
- 8. Lui S.-F., Wu Q., Schmider H. et al. // J. Amer. Chem. Soc. 2000. 122. P. 3671.
- 9. Ghedini M., La Deda M., Aiello I. et al. // Inorg. Chim. Acta. 2004. 357. P. 33.
- 10. Amendola V., Fernandes Y.D., Mangano C. et al. // Dalton Trans. 2003. P. 4340.
- 11. Mikata Y., Yamanaka A., Yamashita A., Yano S. // Inorg. Chem. 2008. 47. P. 7295.
- 12. Кузнецова Л.И., Бурлов А.С., Волобушко Н.В. и др. // Журн. общ. химии. 1998. **68**. С. 1338. [J. Gen. Chem. USSR. 1998. **68**. Р. 1277 (Engl. Transl.)].
- 13. Burlov A.S., Kharisov B.I., Blanko L.M. et al. // Rev. Soc. Chem. Mexico. 1999. 43. P. 143.
- 14. Zhu A.-X., Zhang J.-P., Lin Y.-Y., Chen X.-M. // Inorg. Chem. 2008. 47. P. 7389.
- 15. Савельева З.А., Попов С.А., Клевцова Р.Ф. и др. // Изв. АН. Сер. хим. 2009. № 9. С. 1780.
- 16. Popov S.A., Shakirov M.M., Tkachev A.V., De Kimpe N. // Tetrahedron. 1997. 53. P. 17735.
- 17. Sheldrick G.M., SHELX-97, Release 97-2. Göttingen (Germany): Univ. of Göttingen, 1998.
- 18. Hunter C.A., Sanders I.K.V. // J. Amer. Chem. Soc. 1990. 112. P. 5525.
- 19. Yaniak C. // J. Chem. Soc. Dalton Trans. 2000. P. 3885.
- 20. Sano T., Nishio Y., Hamada Y. et al. // J. Mater. Chem. 2000. 10. P. 157.
- 21. Yu G., Yin S., Shuai Z., Zhu D. // J. Amer. Chem. Soc. 2003. 125. P. 14816.
- 22. Popovych O., Rogers L.B. // Spectrochim. Acta. 1959. 15. P. 584.
- 23. Williams N.J., Gan W., Reibenspies J.H., Hancock R.D. // Inorg. Chem. 2009. 48. P. 1407.