2017

УДК 622.794:662.87

ОЦЕНКА ПРЕДЕЛЬНОЙ ВЛАЖНОСТИ УГОЛЬНОГО КОНЦЕНТРАТА В ПРОМЫШЛЕННЫХ ОБЕЗВОЖИВАЮЩИХ АППАРАТАХ

М. И. Шиляев¹, А. И. Горбунков², А. Р. Богомолов³, Е. М. Хромова¹, Е. Ю. Темникова⁴

¹Томский государственный архитектурно-строительный университет, E-mail: shmi@mail.tomsknet.ru, пл. Соляная, 2, 634003, г. Томск, Россия ²ООО "НПО Завод химреагентов", E-mail: grisworld@mail.ru, ул. Притомская набережная, 13, 650000, г. Кемерово, Россия ³Институт теплофизики им. С. С. Кутателадзе СО РАН, E-mail: barom2@rambler.ru, просп. Академика Лаврентьева, 1, 630090, г. Новосибирск, Россия ⁴Кузбасский государственный технический университет им. Т.Ф. Горбачева, E-mail: teu.pmahp@rambler.ru, ул. Весенняя, 28, 650000, г. Кемерово, Россия

Проведен теоретический анализ процесса обезвоживания угольной суспензии в центрифугах, пневматического обезвоживания в дисковых вакуум-фильтрах и фильтр-прессах. Из условия равенства центробежных сил и сил поверхностного натяжения, действующих на жидкость в объеме гранулированного слоя рабочего элемента ротора центрифуги, найдена аналитическая зависимость для расчета остаточной концентрации жидкости в центрифугируемом слое. Показано хорошее согласование результатов расчетов, проведенных на основе этой зависимости, с паспортными данными и данными режимных карт промышленных центрифуг. С учетом равенства кинетической энергии, прилагаемой со стороны фильтрационного потока в зернистом слое к пленке жидкости на его гранулах, и работы по преодолению сил поверхностного натяжения, удерживающих пленку на поверхностях гранул, установлена аналитическая зависимость для расчета остаточной концентрации жидкости в слое при пневматическом обезвоживании. Оценочные расчеты показали реалистичность результатов, получаемых с помощью найденной формулы, а также их хорошую согласованность с опытными и паспортными данными данными промышленных в слое при пневматическом обезвоживании.

Обезвоживание, угольная суспензия, центрифугирование, коэффициент поверхностного натяжения, коэффициент динамической вязкости, порозность, диаметр угольных частиц, вакуум-фильтры, фильтр-прессы, влажность

Материалом, подвергаемым обезвоживанию на углеобогатительных фабриках Кузбасса, является угольный концентрат коксующихся марок углей: Г, ГЖ, К, КО, ОС, концентратом — обогащенный уголь с зольностью 8-10% против 12-40% у необогащенного. Все процессы обогащения и большинство вспомогательных процессов проходят в водной среде. В табл. 1 приведено среднее распределение классов крупности концентрата с указанием типов применяемого оборудования на углеобогатительных фабриках Кузбасса [1-7]. Реальные классы крупности на фабриках могут быть малозначительно "взаимозасорены".

Nº 3

Работа выполнена при финансовой поддержке в рамках соглашения № 14.583.21.0004 ФЦП (RFMEF158314X0004).

Класс мм	Средняя	Оборудование		
KJIACC, MM	доля участия	для обогащения	для обезвоживания	
0-0.2 (0.5)	20	Флотомашины	Вакуум-фильтры, гипербар-фильтры, термическая сушка	
0.2 (0.5)-1 (2)	10	Спиральные сепараторы	Неподвижные сита, виброгрохоты, центрифуги, в том числе осадительно- фильтрующие, термическая сушка	
1 (2)-13 (18)	35	Отсадочные машины или тяжелосредные гидроциклоны	Виброгрохоты, центрифуги, термическая сушка	
13 (18)-100 (150)	35	Тяжелосредные сепараторы	Виброгрохоты	

ТАБЛИЦА 1. Классы крупности угольного концентрата и тип обогатительного и обезвоживающего оборудования на ОФ Кузбасса

В табл. 2 представлена средняя характеристика различных классов крупности угольных частиц в общем концентрате на обогатительной фабрике (ОФ) "Анжерская".

Класс, мм	Массовая доля	Влажность	Зольность	Обезвоживающее оборудование
13-100	30	7.5	8.0	Виброгрохот
1-13	35	9.5*	9.0	Виброгрохот + центрифуга ФВВ-1121У-02 (7 шт.)
0.5-1	17	15.0*	10.0	Виброгрохот + центрифуга Н-1000 (1 шт.)
0-0.5	18	31.0*	8.0	Вакуум-фильтры Украина ДУ-80-2.7 (3 шт.) и Andriz (2 шт.)
Итого фр. 0-100 мм	100	13.7*	8.9	—
Итого фр. 0–13 мм (поступает на сушку)	70	16.4*	9.2	_

ТАБЛИЦА 2. Средняя характеристика классов крупности частиц в угольном концентрате на ОФ "Анжерская", %

*Влажность до термической сушки.

В данной работе рассмотрено обезвоживание угольной суспензии только в центрифугах, вакуум-фильтрах и фильтр-прессах и с теоретической точки зрения — их предельные возможности, на которые можно рассчитывать в практических условиях.

ЦЕНТРИФУГИРОВАНИЕ

Представим рабочий элемент центрифуги в виде ротора (рис. 1*a*), вращающегося с угловой скоростью ω , с внутренним диаметром $D_1 = 2R_1$ и внешним $D_2 = 2R_2$, в объеме между которыми помещается гранулированный материал (угольный концентрат). Поры между гранулами заполняет жидкость (вода или водный раствор с пониженными вязкостными характеристиками для повышения эффективности обезвоживания). Гранулы будем считать монодисперсными со средним диаметром распределения их по размерам *d*. Требуется найти предельную (остаточную) концентрацию воды в объеме угольного концентрата, удерживающуюся в порах между гранулами. Будем полагать, что основная масса воды выбрасывается из центрифугируемого объема центробежными силами и на поверхностях гранул остается только вода в виде пленки, удерживаемой силами поверхностного натяжения. В слое гранулята выделим элементарный объем *V*, расстояние до которого от оси вращения *R*. Условием предельного обезвоживания 164

в центрифуге поставим равенство центробежных сил (рис. 1 δ), действующих на жидкость на тыльных поверхностях гранул в элементарном объеме V, силам поверхностного натяжения, удерживающим жидкость в виде пленки на этих поверхностях:

 $F_c = F_{\sigma}$,

где

$$F_c = \varepsilon_l V \rho_l \omega^2 R, \tag{1}$$

$$F_{\sigma} = \frac{\sigma}{r} S \,, \tag{2}$$

 ρ_l — плотность жидкости, кг/м³; ω — угловая частота вращения ротора, 1/с; R — расстояние от оси вращения по радиусу до элементарного объема V, м; ε_l — объемная концентрация жидкости в гранулированном слое; σ — коэффициент поверхностного натяжения жидкости, Н/м; r = d/2 — радиус гранул, принимаемых сферическими, м; S — площадь поверхностей гранул в элементарном объеме V, м²

$$S = 4\pi r^2 n V \,, \tag{3}$$

где n — счетная концентрация гранул, $1/M^3$; $4\pi r^2$ — площадь поверхности гранулы радиусом r, M^2 .

Рис. 1. Схема ротора центрифуги для обезвоживания угольной суспензии (*a*) и схема отрыва пленки жидкости от поверхности гранулы: *1* — гранула; *2* — пленка жидкости (*б*)

Приравнивая (1) и (2) с учетом (3), получим соотношение

$$\varepsilon_l \rho_l \omega^2 R = 4\pi r n \sigma \,. \tag{4}$$

Счетную концентрацию *n* свяжем с порозностью гранулированного слоя ε_s путем несложных вычислений:

$$n=\frac{3}{4}\frac{1-\varepsilon_s}{\pi r^3}.$$

Перепишем соотношение (4) в виде

$$\varepsilon_l = 12 \frac{\sigma(1 - \varepsilon_s)}{\rho_l \omega^2 R d^2}.$$
(5)

В качестве опытных данных для сравнения теории с экспериментом будем использовать данные из паспортов центрифуг ФВВ-1121У-02 и ФВВ-1001У-01 (табл. 3) и режимной карты к ФВВ-1001У-01. Проведем оценку данных для ФВВ-1001У-01.

Наименование	ФВВ-1121У-02	ФВВ-1001У-01	
Производительность по исходному продукту, т/ч	Не более 100		
Влажность обезвоженного осадка, %	8 ± 0.5	7.1	
Частота вращения ротора, об/мин	420	420	
Частота колебаний ротора, кол/мин	1600	1600	
Размах колебаний, мм	4-6	4-6	
Площадь фильтрующей поверхности ротора, м ²	1.5	1.45	
Наибольший диаметр конической части ротора, мм	1120		
Внутренний диаметр корпуса ротора, мм		1000	
Мощность электродвигателей, кВт	25.3	25.3	
Масса центрифуги с комплектом ЗИП, кг	4080	3475	
Габаритные размеры, мм:			
длина	2895	2895	
ширина	2165	2060	
высота	1650	1650	

ТАБЛИЦА 3. Данные из паспортов к центрифугам ФВВ (фильтрующие вибрационные вертикальные), установленным на ЦОФ "Сибирь" и ОФ "Анжерская"

Выписка из режимной карты к ФВВ-1001У-01 (установлена на ЦОФ "Сибирь"):

Производительность по исходному продукту, т/ч	До 80
Крупность обезвоживаемого материала, мм	0.5 - 13
Содержание класса менее 0.5 мм в питании, %	Не более 20
Содержание класса более 0.5 мм в фугате, %	5 - 10
Влажность исходного угля, %	20 - 30
Влажность обезвоженного угля, %	8-12
Содержание твердого в фугате, кг/м ³	50 - 60
Количество центрифуг, шт	8

Зададим диаметр ротора центрифуги 2R = 1 м, крупность обезвоживаемого угля 0.5 - 13 мм, плотность воды $\rho_l = 10^3$ кг/м³, коэффициент поверхностного натяжения воды $\sigma = 0.072$ H/м, N = 420 об/мин. Примем для плотной упаковки шаров $\varepsilon_s = 0.4$ [8], размер гранул среднеквадратичным $d = \sqrt{0.5 \cdot 13} = 2.55$ мм = $2.55 \cdot 10^{-3}$ м. В соответствии с формулой (5), учитывая $\omega = \pi N / 30 = 3.14 \cdot 420 / 30 = 44$ 1/с, получим

$$\varepsilon_l = 12 \frac{0.072(1-0.4)}{10^3(44)^2 0.5(2.55 \cdot 10^{-3})^2} = 0.0824 = 8.24$$
 % от общего объема.

Поскольку в табл. 3 и выписке из карты концентрации воды приведены на единицу массы угольной суспензии, требуется пересчет этой концентрации по формуле

$$\varepsilon_l' = \frac{1}{1 + \frac{1 - \varepsilon_s}{\varepsilon_l} \frac{\rho}{\rho_l}}$$

где ε'_l — концентрация воды в угольном гранулированном слое, кг/кг; ρ — плотность угля.

Принимая $\rho = 1500 \text{ кг/м}^3$, при плотной упаковке шаров находим

$$\varepsilon_{l}' = \frac{1}{1 + \frac{1 - 0.4}{0.0824} 1.5} 100\% = 8.4\%.$$
(6)

166

В выписке $\varepsilon'_l = 8 - 12$ %, в табл. 3 $\varepsilon'_l = 7.1$ %, что в среднем хорошо согласуется с теоретическим результатом (6).

Для параметров центрифуги ФВВ-1121У-02 (табл. 3) имеем $\varepsilon'_l = 7.6$ % при паспортном значении 7.5 – 8.5 %, что также показывает хорошее согласие теории и опыта.

ПНЕВМАТИЧЕСКОЕ ОБЕЗВОЖИВАНИЕ

Обезвоживание угольной суспензии продувкой в вакуум-фильтрах и в фильтр-прессах связано прежде всего с уносом воздухом большей части жидкости, заполняющей поровое пространство, что не определяет основные затраты энергии на этот процесс [9-13]. Предельное содержание влаги в слое складывается из объемов жидкости, остающейся на поверхностях гранул в виде пленки, на удаление которой и затрачивается основная часть энергии при пневматическом обезвоживании. В этой связи будем исходить из того, что для отрыва жидкости с поверхности гранул необходимо затратить энергию, которая превосходила бы энергию (работу) по преодолению сил поверхностного натяжения жидкости на всех гранулах в объеме V. Это условие можно записать в виде

$$k\varepsilon_l \rho_l V \frac{u^2}{2} \ge \frac{\sigma}{d^2} STl, \qquad (7)$$

где u — средняя скорость движения жидкости на поверхностях гранул, которая создается фильтрационным потоком воздуха в порах за счет напряжения трения о поверхность пленки; S — площадь поверхностей гранул в объеме V; T — коэффициент извилистости пор; k — эмпирический коэффициент; Tl/2 — путь, на котором совершается работа силами поверхностного натяжения в слое толщиной l (рис. 2a). Остальные параметры и обозначения те же, что и для центрифугирования. В формуле (7) предполагается, что работа сил поверхностного натяжения осуществляется с тыльных поверхностей гранул площадью S/2 и на пути Tl/2 (см. рис. 2δ).

Запишем:

$$\frac{S}{V} = \frac{S}{V_s} \frac{V_s}{V} = a(1 - \varepsilon_s) = \frac{3}{r}(1 - \varepsilon_s),$$

где $S/V_s = a = 3/r$ — удельная поверхность шара; V_s — объем шаров диаметром d = 2rв объеме V; $V_s/V = 1 - \varepsilon_s$ — по определению.

Рис. 2. Схема продуваемого слоя гранулята (*a*) и расчетная схема продувки гранулята (б): *l* — гранулы; *2* — пленка жидкости

Среднюю скорость жидкости и на поверхностях гранул можно представить как

$$u=\frac{u_{\delta}}{2},$$

где u_{δ} — скорость жидкости на поверхности пленки толщиной δ , u = 0 на поверхностях гранул (рис. 26). Соотношение (7) можно переписать в виде

$$k\varepsilon_l \rho_l \frac{u_{\delta}^2}{8} \ge \frac{6\sigma}{d^2} (1 - \varepsilon_s) Tl.$$
(8)

Для того чтобы сорвать пленку жидкости с поверхности гранул, необходимо создать достаточно интенсивное фильтрационное движение воздуха в порах со скоростью u_f , которое должно соответствовать квадратичному закону фильтрации. При этом скорость u_{δ} должна соответствовать равенству напряжения трения на поверхности пленки со стороны внешнего фильтрационного потока τ_f напряжению трения со стороны пленки жидкости τ_{fl} :

$$\tau_f = \tau_{fl} \,, \tag{9}$$

где $\tau_{fl} = \mu_l(u_{\delta} / \delta)$, μ_l — динамический коэффициент вязкости жидкости. Среднюю толщину пленки жидкости определим как

$$\delta = \varepsilon_l \frac{V}{S/2} = \frac{2\varepsilon_l}{a(1-\varepsilon_s)} = \frac{1}{3} \frac{\varepsilon_l}{1-\varepsilon_s} d .$$
(10)

Тогда

$$\tau_{fl} = 3\mu_l \frac{u_\delta}{\varepsilon_l} \frac{1 - \varepsilon_s}{d}$$

Рассматривая поровой канал как трубу с эффективным диаметром d_{fl} , можно записать известное равенство

$$\Delta P \frac{\pi d_{fl}^2}{4} = \tau_{fl} \pi d_{fl} \frac{lT}{2} + \tau_{fd} \pi d_{fl} \frac{lT}{2} \approx \tau_{fl} \pi d_{fl} lT , \qquad (11)$$

где ΔP — перепад давления, расходуемый на преодоление фильтрационным потоком напряжения трения на поверхностях пленки с тыльной стороны гранул и сухих поверхностях гранул с лобовой стороны на длине порового канала lT; τ_{fd} — напряжение трения фильтрационного потока на сухих частях поверхностей гранул (по данным [8, 14], T = 1.5 для $\varepsilon_s = 0.4$ и T = 1.1 для $\varepsilon_s = 0.8$). В (11) принято $\tau_{fd} \approx \tau_{fl}$. Таким образом, в соответствии с равенством (9) будем иметь

$$\Delta P = 4\tau_f \frac{lT}{d_{fl}} = 4\left(3\mu_l \frac{u_\delta}{\varepsilon_l} \frac{1-\varepsilon_s}{d}\right) \frac{lT}{d_{fl}}.$$
(12)

Поскольку, согласно [1, 2],

$$d_{fl}=\frac{2}{3}\frac{\varepsilon_s}{1-\varepsilon_s}d,$$

из (12) находим

$$\Delta P = 18 \mu_l \frac{u_{\delta}(1-\varepsilon_s)^2}{d^2 \varepsilon_l \varepsilon_s} lT ,$$

168

откуда

$$u_{\delta} = \frac{\varepsilon_l d^2 \varepsilon_s \Delta P}{18\mu_l (1 - \varepsilon_l)^2 lT} . \tag{13}$$

Подставим (13) в (8):

$$\Delta P \ge \left(\frac{6 \cdot 8(18)^2}{k\rho_l}\right)^{1/2} \frac{(1 - \varepsilon_s)^{5/2}}{\varepsilon_s} \frac{\sigma^{1/2} (Tl)^{3/2} \mu_l}{\varepsilon_l^{3/2} d^3},$$

здесь

$$\varepsilon_l \ge \left(\frac{48(18)^2}{k\rho_l}\right)^{1/3} \frac{(1-\varepsilon_s)^{5/3}}{\varepsilon_s^{2/3}} \frac{(\sigma\mu_l^2)^{1/3}}{d^2} Tl(\Delta P)^{-2/3}.$$
 (14)

Для плотной упаковки шаров ($\varepsilon_s = 0.4$, T = 1.5) получим

$$\varepsilon_l \ge 29.44 \left(\frac{\sigma \mu_l^2}{k \rho_l \Delta P^2}\right)^{1/3} \frac{l}{d^2}.$$
(15)

Для плотной упаковки из (15) следует

$$\Delta P \ge 160 \left(\frac{\sigma \mu_l^2 l^3}{k \rho_l \varepsilon_l^3}\right)^{1/2} \frac{1}{d^3}.$$
(16)

Общие потери давления в слое толщиной *l* будут равны

$$\frac{\Delta P_{\Sigma}}{l} = \frac{\Delta P}{l} + \frac{1}{l} \varepsilon_l \rho_l \frac{u_{\delta}^2}{8}, \qquad (17)$$

где ΔP может быть вычислена по формуле Эргана [8, 14] по относительной скорости $(u_f - u_\delta)$, u_f — скорость фильтрации воздуха в слое. В формуле (17) второе слагаемое — затраты энергии на приведение в движение пленки жидкости на единицу толщины слоя. По формуле Эргана для квадратичного закона фильтрации [8, 14]

$$\frac{\Delta P}{l} = 1.75 \frac{1 - \varepsilon_s}{\varepsilon_s^3} \rho_a \frac{(u_f - u_\delta)^2}{d}, \qquad (18)$$

 ρ_a — плотность воздуха.

Второе слагаемое в правой части уравнения (17) намного меньше первого и им можно пренебречь. При этом в формуле (18) можно также принять $u_f >> u_{\delta}$, откуда следует, что $\Delta P_{\Sigma} \approx \Delta P$, а значение скорости фильтрации u_f можно приближенно рассчитывать по формуле (18) в пренебрежении u_{δ} в сравнении с u_f , подставляя ΔP из формулы (16) в формулу (18).

Пусть для воды $\sigma = 0.072$ H/м, $\mu_l = 10^{-3}$ Па·с, $\rho_l = 10^3$ кг/м³, l = 0.05 м, d = 3 мм = 0.003 м, $\varepsilon_l = 0.2$, $\sqrt{k} \approx 1$. Тогда по формуле (16) находим $\Delta P = 6275$ Па ≈ 0.063 атм, по формуле (13) — $u_{\delta} = 0.0262$ м/с, по формуле (18) при $u_f >> u_{\delta}$ — $u_f = 7.35$ м/с. Из расчетов также следует, что полученные значения ΔP , u_{δ} , u_f весьма реалистичны, при этом $u_{\delta}/u_f = 0.00356$, что полностью оправдывает принятое приближение $u_f >> u_{\delta}$. Эффективный диаметр пор $d_{fl} = 0.00133$ м = 1.33 мм. Эффективное число Re_e = $(u_f d_{fl})/v = (7.35 \cdot 0.00133)/1.5 \cdot 10^{-5} = 652 > 100$, что отвечает квадратичному закону фильтрации [8]. Средняя толщина пленки, согласно формуле (10), $\delta = 333$ мкм.

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Сопоставление формулы (9) с опытными и паспортными данными для вакуум-фильтров. Схема фильтровального элемента вакуум-фильтра представлена на рис. 3 [15, 16].

Рис. 3. Схема фильтровального элемента вакуум-фильтра

В табл. 4 приведен гранулометрический состав угольной суспензии, подаваемой в вакуумфильтр.

Продукт	Выход	Зольность
+ 0.315	11.4	5.3
-0.315 + 0.125	39.9	5.6
-0.125 + 0.040	23.6	7.3
- 0.040	25.1	8.8
Всего	100	6.8

ТАБЛИЦА 4. Фактический ситовый состав концентрата флотации кл. 0–0.5 мм (подается на вакуум-фильтры) ОФ "Анжерская", октябрь 2014 г., %

Выписка из паспорта вакуум-фильтра ДУ 250-3.75 "Сибирь" (установлен на ЦОФ "Сибирь"):

Производительность удельная, т/(ч·м ²)	0.0-0.32
Полная поверхность фильтровальная, м ²	250
Поверхность фильтровальная сектора, м ²	1.12
Число дисков, шт.	14
Диаметр дисков, м	3.75
Число секторов на диске	18
Объем ванны, м ³	14
Продолжительность цикла одного сектора, мин	0.8 - 3.2
Зона фильтрования, град	93
Зона просушки, град	173
Зона отдувки, град	39
Высота, мм	9400
Ширина, мм	4400
Длина, мм	4500
Масса, т	33.4

Выписка из режимной карты к вакуум-фильтру ДУ 250-3.75 "Сибирь" (установлен на ЦОФ "Сибирь"):

Давление воздуха в ресивере, МПа	0.06 - 0.07
Вакуум в распределительной головке, МПа	0.06 - 0.08
Коэффициент отдувки	250
Частота вращения дисков, мин ⁻¹	1.12
Влажность кека, %	14
Содержание в питании класса менее 0.05 мм, %	Не более 40
Содержание твердого в питании, кг/м ³	18
Содержание твердого в фильтрате, кг/м ³	14
Оптимальный анионактивный флокулянт	Технофлок-356
Удельный расход флокулянта, г сухого /т	5-15
Рабочая концентрация подаваемого флокулянта	0.02 - 0.05
Количество вакуум-фильтров	8

Средний диаметр угольных частиц суспензии примем в соответствии с табл. 4 среднеквадратичным, полагая, что процесс обезвоживания связан с поверхностными силами, пропорциональными удельной площади поверхностей частиц:

$$d = (40^2 \cdot 0.251 + (125)^2 \cdot 0.236 + (315)^2 \cdot 0.399 + (0.5)^2 \cdot 0.114)^{1/2} = 270$$
 мкм.

Определим толщину отфильтрованного слоя угольных частиц (кека) на фильтровальной ткани по балансу массы:

$$S_f \rho_p = \frac{1}{2} q S_f \Delta t \,, \tag{19}$$

где S_f — общая площадь фильтрации, м²; ρ_p — плотность кека, кг/м³; q — общая удельная производительность вакуум-фильтра по готовому продукту, кг/(м²·ч); Δt — продолжительность цикла одного сектора, мин. Из (19) находим

$$l = \frac{q \frac{\Delta t}{120} 10^3}{\varepsilon_l \rho_l + (1 - \varepsilon_l) \rho},$$

в которой учтены две стороны фильтровального элемента. Подставляя l в формулу (15), получим квадратное уравнение для вычисления ε_l :

$$\varepsilon_{l} = \frac{\rho}{2(\rho - \rho_{l})} - \sqrt{\frac{\rho^{2}}{4(\rho - \rho_{l})^{2}} - c}, \qquad (20)$$

где

$$c = \frac{0.245}{\rho - \rho_l} \left(\frac{\sigma \mu_l^2}{k \rho_l \Delta P^2} \right)^{1/3} \frac{q \Delta t}{d^2}.$$

Проведем расчет по формуле (20), принимая $\rho_l = 10^3 \text{ кг/м}^3$, $\rho = 1500 \text{ кг/м}^3$, k = 1, $\Delta P = 0.08 \text{ МПа}$, $q = 320 \text{ кг/(m^2·ч)}$, $\Delta t = 1.5 \text{ мин}$ (рис. 3, соответствующие максимальной производительности q), $\sigma = 0.072 \text{ H/m}$, $\mu_l = 10^{-3} \text{ Па·с.}$ Получим $\varepsilon_l = 0.265$ ($\varepsilon'_l = 0.23$), что составляет близкое значение к паспортному $\varepsilon_s = 0.3$. Если учтем, что кек не уплотнен до плотной упаковки, что весьма реально, например $\varepsilon_s = 0.45$, то пересчет дает $\varepsilon_l = 0.3$ ($\varepsilon'_l = 0.27$), что отвечает паспортным данным.

Сопоставление формулы (15) с опытными и паспортными данными для фильтр-прессов. Схема фильтровального элемента камерного фильтр-пресса показана на рис. 4 [15, 16]. Здесь же приведены времена операций обезвоживания. Гранулометрический состав угольных частиц суспензии представлена в табл. 5.

Рис. 4. Схема фильтровального элемента камерного фильтр-пресса

ТАБЛИЦА 5. Фактический ситовый состав сгущенного продукта радиального сгустителя кл. 0–0.3 мм (подается на камерный фильтр-пресс) ЦОФ "Щедрухинская", сентябрь 2014 г., %

Продукт	Выход	Зольность
+0.2	1.8	9.5
0.1 - 0.2	5.7	5.7
0.063 - 0.1	14.6	5.3
0.04 - 0.063	10.3	7.7
0 - 0.04	67.6	22.1
Всего	100	17.0

Проведем оценку остаточной толщины кека *l* в сравнении с шириной фильтровального зазора за счет уменьшения его порозности на основе массового баланса пульпы:

$$M_r + \varepsilon_{s0}\rho_l V_0 = M_r + \varepsilon_s \rho_l V + \rho_l (V_0 - V), \qquad (21)$$

где M_r — масса частиц в пульпе, кг; ε_{s0} и ε_s — начальная и конечная порозность слоя от пульпы до кека; V_0 , V — начальный объем пульпы и конечный объем кека, м³. Последнее слагаемое в (21) — масса фильтрата, кг. Из (21) с учетом $V_0 = l_0(h_0Z_0)$, $V = l(h_0Z_0)$ следует

$$\frac{l}{l_0} = \frac{1 - \varepsilon_{s0}}{1 - \varepsilon_s},\tag{22}$$

где l и l_0 — толщина зазора, занятого пульпой, и остаточная суммарная толщина кека по обе стороны зазора, м. Величину порозности между частицами пульпы можно вычислить по массовой концентрации частиц в пульпе c, кг/м³, по формуле

$$\mathcal{E}_{s0} = 1 - \frac{c}{\rho}$$
.

Эксплуатационная величина $c_0 = (150 - 200)$ г/л, так что при значении $c_0 = 150$ г/м³ получим $\varepsilon_{s0} = 0.9$. Если принять порозность кека как зернистый слой с плотной упаковкой угольных частиц, то уменьшение толщины слоя должно произойти в 6 раз:

172

$$\frac{l}{l_0} = \frac{1 - 0.4}{1 - 0.9} = 6$$

Таким образом, при начальной толщине слоя пульпы 35 мм (см. рис. 4) конечная толщина кека на одной стороне фильтра будет равна

$$l = \frac{35}{2 \cdot 6} = 2.9$$
 MM.

В соответствии с табл. 5 определим среднеквадратичный размер угольных частиц в пульпе по их крайним размерам:

$$d = \sqrt{40 \cdot 300} \approx 110$$
 мкм.

Тогда, полагая $\Delta P = 0.6$ МПа, по формуле (15) найдем

$$\varepsilon_l = 29.44 \left(\frac{0.072 \cdot 10^{-6}}{10^3 (0.6)^2 10^{12}} \right)^{1/3} \frac{2.9 \cdot 10^{-3}}{(1.1)^2 10^{-8}} = 0.41.$$

Полученное значение $\varepsilon_l = 0.41$ выше опытного (табл. 6). Если предположить, что кек не представляет собой зернистую среду плотной упаковки и его порозность $\varepsilon_s = 0.5$, то пересчет по формуле (14) с учетом большей толщины слоя кека в соответствии с формулой (22) дает остаточную концентрацию жидкости в кеке $\varepsilon_l = 0.31$ ($\varepsilon'_l = 0.29$). При $\varepsilon_s = 0.45$ имеем $\varepsilon_l = 0.36$ ($\varepsilon'_l = 0.30$).

ТАБЛИЦА 6. Результаты опыта 6 ноября 2014 г. на ЦОФ "Щедрухинская"

Номер п/п	Время	Подача реагента, л/цикл	\mathcal{E}_l' , %
В средне	30.0		
1	11:00	0	28.9
2	12:00	0	31.5
	30.2		
3	13:00	30	28.2
4	14:00	30	28.9
5	15:00	30	31.4
6	16:00	30	29.5
7	17:00	30	29.8
	29.6		

выводы

Получена формула для расчета предельной концентрации воды в угольном грануляте при его обезвоживании в центрифугах, дающая хорошее согласование с паспортными и опытными данными для промышленных центрифуг ФВВ-1121У-02 и ФВВ-1001У-01. В теоретическую формулу для расчета предельной концентрации жидкости в гранулированном материале входят параметры, позволяющие повысить глубину обезвоживания гранулята за счет снижения коэффициента поверхностного натяжения воды с помощью специальных добавок, а также увеличения числа оборотов и диаметра центрифуг.

Формула для расчета пневматического обезвоживания суспензии позволяет оценить перепад давления на продуваемом слое кека при заданных значениях σ , μ_l , ρ_l для жидкости, толщины слоя *l* со средним размером угольных частиц *d* и требуемой остаточной концентрацией жидкости в слое ε_l . Эта формула дает хорошее физическое согласование с подобной формулой, полученной авторами для центробежного обезвоживания суспензии, в которой остаточное значение ε_l также обратно пропорционально квадрату размера гранул *d* и линейно зависит от вязкостных характеристик жидкости, только для центробежного центрифугирования $\varepsilon_l \sim \sigma$, для пневматического обезвоживания $\varepsilon_l \sim (\sigma \mu_l^2)^{1/3}$. Установлено, что введение добавок, снижающих коэффициент поверхностного натяжения при центрифугировании, дает возможность прямо пропорционально снизить остаточную влагу в слое. При пневматическом обезвоживании одновременно этот же эффект достигается за счет снижения коэффициента поверхностного натяжения и снижения динамической вязкости жидкости.

Из приведенных оценок следует, что при всех допущениях, сделанных при постановке задачи, полученные формулы верно отражают физику пневматического обезвоживания суспензии как в вакуум-фильтрах, так и в фильтр-прессах и могут служить основой для инженерного расчета и оптимизации их режимных и геометрических параметров.

СПИСОК ЛИТЕРАТУРЫ

- **1. Бедрань Н. Г.** Машины для обогащения полезных ископаемых. Киев; Донецк: Вища шк., 1980. 416 с.
- **2.** Кармазин В. И., Серго Е. Е., Жендринский А. П. и др. Процессы и машины для обогащения полезных ископаемых. — М.: Недра, 1974. — 559 с.
- **3.** Оконишников А. И., Долгополов Л. Н. Оценка уровня качества оборудования углеобогатительных фабрик. М.: Недра, 1981. 201 с.
- **4.** Хайдакин В. И., Бутовецкий В. С., Кошварь М. Н. и др. Наладка и эксплуатация технологических комплексов углеобогатительных фабрик. — М.: Недра, 1986. — 223 с.
- **5.** Благов И. С., Коткин А. М., Черевко И. Е. и др. Оборудование для обогащения угля. М.: Недра, 1979. 335 с.
- **6. Чуянов Г. Г.** Обезвоживание, пылеулавливание и охрана окружающей среды. М.: Недра, 1987. 260 с.
- 7. Гольдберг Ю. С., Гонтаренко А. А., Баришполец В. Т., Гищук Б. В. Процессы и оборудование для обезвоживания руд. М.: Недра, 1977. 168 с.
- **8.** Аэров М. Э., Тодес О. М., Наринский Д. А. Аппараты со стационарным зернистым слоем. Л.: Химия, 1979. 176 с.
- 9. Ширяева Е. В., Гутин Ю. В., Аксенов А. А. Определение параметров процессов фильтрования и обезвоживания осадков в промышленных фильтрах // Хим. и нефтегазовое машиностроение. 2008. № 11. С. 5–9.
- Ширяева Е. В., Гутин Ю. В. Методы выбора основного и комплектующего оборудования для промышленных вакуум-фильтровальных установок // Хим. и нефтегазовое машиностроение. — 2010. — № 5. — С. 33 – 37.
- 11. Mel Laurila. Using belt vacuum filters to dewater fine coal, Coal Age, 1998, Vol. 103, No. 1. P. 40–147.
- 12. Fisher M. C., Shill M. G. The dewatering of fine coal refuse with a continuous high performance belt filter press, Mining Engineering, 1981, Vol. 33, No. 10. P. 1482–1484.
- Williams K. P., Fletcher R. M., Strydom P. J. Pilot scale belt press filtration of coal refuse the effect of polymeric flocculants, Mine and Quarry, 1990, Vol. 19, No. 6. — P. 26–129.
- 14. Шиляев М. И., Хромова Е. М., Богомолов А. Р. Интенсификация тепломассообмена в дисперсных средах при конденсации и испарении. — Томск: Изд-во ТГАСУ, 2010. — 272 с.
- 15. Брук О. Л. Фильтрование угольных суспензий. М.: Недра, 1978. 271 с.
- **16.** Антипенко Л. А. Технологические регламенты обогатительных фабрик Кузнецкого бассейна / СибНИИУглеобогащения. Прокопьевск, 2003. 428 с.