РАСПРОСТРАНЕНИЕ ПЛАМЕНИ В КАНАЛЕ ПЕРЕМЕННОГО СЕЧЕНИЯ ПРИ ФИЛЬТРАЦИИ ГАЗА

С. С. Минаев, В. С. Бабкин

Институт химической кинетики и горения СО РАН, 630090 Новосибирск

Создана одномерная нестационарная модель, описывающая распространение газового пламени в узком канале переменного сечения при истечении потоке газа, учитывающая распространение тепла по стенкам канала. Рассмотрен случай, когда поперечное сечение канала медленно меняется на расстоянии порядка тепловой толщины волны горения. Показано, что в такой системе возможны режим распространения пламени с высокой скоростью (порядка нормальной скорости пламени), режим распространения с низкой скоростью, как при фильтрационном горении в пористой среде, и смешанный режим горения, при котором широкая часть канала пламя проходит с высокой скоростью, а узкую часть — с низкой. Построена простая аналитическая модель кинематики пламени в такой системе, на возможность которых указывали результаты численного моделирования. Рассмотренная простая модель представляет собой попытку учесть макровискозность пористой среды при моделировании фильтрационного горения газов.

ВВЕДЕНИЕ

Фильтрационное горение газов в пористых средах привлекает внимание исследователей, поскольку имеет ряд характерных особенностей, важных для практических приложений в энергетике, в области пожаровзрывобезопасности и в химических производствах [1–3]. Основные положения теории фильтрационного горения газов в пористых средах были разработаны в [4, 5]. В этих работах не учитывалась реальная структура пористой среды и была создана одномерная двухтемпературная модель фильтрационного горения, предполагающая существование двух взаимопроникающих сред. Строгое определение такого подхода может быть получено, если использовать представление о пористой среде как о системе прямых узких трубок в негорючем материале или чередующихся слоев газа и негорючего материала с характерными размерами, меньшими тепловой толщины волны горения.

Реальные пористые среды представляют собой сложную разветвленную сеть каналов с переменным сечением, которые проходят между негорючим материалом. В таких системах размер элемента пористой среды часто превышает характерную тепловую толщину и размер зоны химической реакции волны горения. Распространение пламени в таких средах может работать как чередование режимов распространения пламени с высокими скоростями (порядка нормальной скорости) и низкими скоростями, как в модели [4] при фильтрационном горении в пористой среде. Попытка учесть дискретную структуру пористой среды была предпринята в работе [6], в которой численно исследовалась модель с простой периодической дискретной структурой пористой среды. В ней, в частности, был обнаружен оценочный режим распространения пламени в такой системе. В данной работе предлагается простое объяснение этого явления на примере распространения пламени в канале переменного сечения с постоянной температурой стенок канала. Как и в работах [4, 5, 7], в данном исследовании не учитывается поперечное распределение температуры относительно стенок, а также искривление пламени и реальная газодинамика потока. Считается, что теплообмен между газом и стенками канала происходит по закону Ньютона. В этих приближениях из полной системы уравнений, описывающей распространение пламени в шелле с планом меняющимся поперечным размером, получено нестационарное уравнение для фронта химической реакции. Оно имеет частные решения, описывающие распространение пламени в режиме высокой скорости, как для неадиабатического пламени в модели [7], и распространение пламени с низкими скоростями, как в модели фильтрационного горения в пористой среде [4], а также смешанный режим и режим оцифровой пламен-
ни. Математическая модель, рассматриваемая в данной работе, является обобщением модели фильтрационного горения газа в пористой среде [4, 5] на случай канала переменного сечения.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Схема распространения волны горения в цели переменного сечения приведена на рис. 1. Предварительно перемешанная газовая смесь и продукты горения заполняют области 1 и 2 соответственно. Поперечный размер щели h зависит от координаты x, вдоль которой пламя распространяется:

$$h(x) = h_0(1 + a \cos kx), \quad k = 2\pi/L. \quad (1)$$

Здесь a — параметр, характеризующий отклонение ширины щели от среднего значения; L — расстояние между соседними точками на оси x с минимальными или максимальными сечениями; h_0 — средняя ширина щели. Толщина стенки канала h_s постоянна. Свежая смесь движется вдоль оси x со скоростью $v(x)$. Предполагается, что поперечный размер канала слабо зависит от координаты: $a h_0 k \ll 1$. В дальнейшем будем пренебрегать членами порядка $O(a h_0 k)$. Зависимость скорости изменения потока газа от x можно найти из законов сохранения массы, который приближении $a h_0 k \ll 1$ и при постоянной плотности газа можно записать в виде

$$v(x)h(x) = \text{const.} \quad (2)$$

Предполагается, что фронт химической реакции представляет собой поверхность $x = x_f(t)$, разделяющую свежую смесь и продукты горения. Уравнения распространения тепла в газе и по стенкам канала, а также уравнение диффузии недостающего компонента смеси имеют вид

$$c_{pg} \rho_g \left(\frac{\partial T}{\partial t} - v \frac{\partial T}{\partial x} \right) =$$

$$= \lambda_g \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + Q W(T), \quad (3)$$

$$c_s \rho_s \frac{\partial T_s}{\partial t} = \lambda_s \left(\frac{\partial^2 T_s}{\partial x^2} + \frac{\partial^2 T_s}{\partial y^2} \right) \quad (4)$$

$$\rho_g \frac{\partial C}{\partial t} - \rho_g v \frac{\partial C}{\partial x} = \rho_g \kappa \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} \right) - W(T). \quad (5)$$

Здесь T, T_s — температуры газа и стенки канала соответственно; c_s, ρ_s — удельная теплоемкость при постоянном давлении и плотность материала стенки; c_{pg}, ρ_g — удельная теплоемкость при постоянном давлении и плотность газа; C — концентрация недостающего компонента смеси, отнесенная к C_0 — концентрации недостающего компонента свежей смеси; λ_g, λ_s — теплоемкости газа и материала стенки; κ — коэффициент диффузии недостающего компонента свежей смеси; $Q = c_{pg} (T_b - T_0)$ — теплота реакции; T_b, T_0 — адиабатическая температура плоского пламени и температура свежей смеси соответственно; $W(T)$ — скорость химической реакции; индексы g, s относятся к газу и стенке соответственно.

Для системы уравнений (3)-(5) при $x \to \pm \infty$ заданы граничные условия:

$$x \to +\infty: \quad T, T_s \to T_0, \quad C \to 1,$$

$$\frac{\partial T}{\partial x}, \quad \frac{\partial T_s}{\partial x}, \quad \frac{\partial C}{\partial x} \to 0; \quad (6)$$

$$x \to -\infty: \quad \frac{\partial T}{\partial x}, \quad \frac{\partial T_s}{\partial x} \to 0. \quad (7)$$

Внутренние границы между стенками щели и газом задаются уравнениями $y = \pm h_0(1 + a \cos kx)/2$. Считая, что толщина стенок канала много меньше среднего расстояния между стенками, $h_s \ll h_0$, уравнение для внешних границ можно приближенно записать в виде

$$y = \pm (h_s + h_0(1 + a \cos kx)/2).$$

На этих границах
в случае ньютоновского теплообмена выполняются следующие условия для потоков тепла и концентрации недостающего компонента:

$$y = \pm h_0(1 + a \cos kx)/2;$$

$$\lambda_g \frac{\partial T}{\partial n_\pm} \approx \mp \lambda_g \frac{\partial T}{\partial y} = \alpha(T - T_s),$$

$$\lambda_s \frac{\partial T_s}{\partial n_\pm} \approx \mp \lambda_s \frac{\partial T_s}{\partial y} = \mp \alpha(T - T_s), \quad \frac{\partial C}{\partial y} = 0;$$

$$y = \pm (h_s + h_0(1 + a \cos kx)/2): \quad \lambda_s \frac{\partial T_s}{\partial y} = 0. \quad (9)$$

Здесь α — коэффициент теплообмена. Производные по нормали к границам между газом и стенками канала $\partial / \partial n_\pm$ при условии $a h_0 k \ll 1$ заменены в уравнениях (8), (9) производными по координате y. Условие (9) записано для случая, когда внешние стенки канала теплоизолированы.

В случае сильной зависимости скорости химической реакции от температуры ($W(T) \sim \exp(E/RT)$) и при условии $N = E/RT_b > 1$, где N — безразмерная энергия активации, можно считать, что тепловыделение и поглощение недостающего компонента свежей смеси происходит на поверхности, разделяющей свежую смесь и продукты горения. В этом случае член, ответственный за химическую реакцию в (3), (5), можно записать в виде [8]

$$W(T) = u_n \exp \left(\frac{N}{2} \left(1 - \frac{T_b}{T_f} \right) \right) \delta(x - x_f) \approx$$

$$\approx u_n \exp \left(\frac{N(T_f - T_b)}{2T_b} \right) \delta(x - x_f), \quad (10)$$

gде δ — единичная функция Дирака, u_n — нормальная скорость распространения адиабатического пламени, T_f — температура на фронте пламени, близкая к величине T_b, $(T_f - T_b) \ll 1$. Такая форма записи скорости химической реакции позволяет найти распределение температуры и концентрации газа из решения кусочнолинейной задачи для системы уравнений вида (3)–(5), которые не содержат нелинейные члены, ответственные за химическую реакцию. Границные условия на фронте химической реакции $x = x_f$ для этой системы с учетом (10) имеют вид

$$\lambda_g \left(\frac{\partial T_2}{\partial x} - \frac{\partial T_1}{\partial x} \right) =$$

$$= \rho_g c_p g u_n (T_b - T_0) \exp \left(\frac{N(T_f - T_b)}{2T_b} \right), \quad (11)$$

$$\lambda_s \frac{\partial C}{\partial x} = u_n \exp \left(\frac{N(T_f - T_b)}{2T_b} \right), \quad (12)$$

$$T_1 = T_2 = T_f,$$

$$C = 0,$$

$$T_{s_1} = T_{s_2}, \quad (15)$$

$$\frac{\partial T_{s_1}}{\partial x} = \frac{\partial T_{s_2}}{\partial x}. \quad (16)$$

Индексы 1, 2 относятся к областям свежей смеси и продуктов горения соответственно. Уравнение для концентрации (5) записывается лишь для области свежего газа, так как в процессе химической реакции недостающий компонент полностью расходуется ($C \equiv 0$ в продуктах горения).

Из системы (3)–(5) получим квазиодномерные уравнения, предполагая, что температуры $T_s(x, y), T(x, y)$ и концентрация $C(x, y)$ близки к своим средним значениям по координате y:

$$\langle T(x, y) \rangle = \frac{1}{h} \int_{-h/2}^{h/2} T(x, y) \, dy = T(x),$$

$$\langle C(x, y) \rangle = \frac{1}{h} \int_{-h/2}^{h/2} C(x, y) \, dy = C(x),$$

$$\langle T_s(x, y) \rangle = \frac{1}{h} \int_{-h/2}^{h/2} T_s(x, y) \, dy =$$

$$= \frac{1}{h} \int_{-h/2}^{h/2} T_s(x, y) \, dy = T_s(x).$$

После осреднения по y систему (3)–(5) можно записать в виде
\[
c_{pg} \rho_g \left(\frac{\partial T}{\partial t} - v(x) \frac{\partial T}{\partial x} \right) = \lambda_g \frac{\partial^2 T}{\partial x^2} - \frac{2\alpha(T - T_s)}{h(x)}, \tag{17}
\]

\[
ce_s \rho_s \frac{\partial T_s}{\partial t} = \lambda_s \frac{\partial^2 T_s}{\partial x^2} - \frac{\alpha(T_s - T)}{h_s}, \tag{18}
\]

\[
\frac{\partial C}{\partial t} - v(x) \frac{\partial C}{\partial x} = \kappa \frac{\partial^2 C}{\partial x^2}. \tag{19}
\]

При выводе этих уравнений использовались условия (8), (9) для потоков тепла на границе между газом и стенками канала. В системе (17)–(19) удобно перейти к безразмерным переменным, используя следующую замену переменных:

\[
x' = \frac{x \rho_g c_{pg} u_m}{\lambda_g}, \quad \tau = \frac{t \lambda_g}{c_{pg} \rho_g u_n}, \tag{20}
\]

\[
T' = \frac{T - T_0}{T_b - T_0}, \quad \theta = \frac{T_s - T_0}{T_b - T_0}, \quad V \rightarrow \frac{v}{u_n}.
\]

Предположим теперь, что в уравнениях (17)–(19) температура и концентрация являются функциями только безразмерной переменной \(\eta = x' - x_f \). Последнее утверждение справедливо в случае, когда изменение поперечного размера цилиндра можно пренебречь на масштабах порядка толщины волны гонения, т. е. \(\delta h/\delta x \ll h/\delta t_h \), где \(t_h \) — характерная толщина волны гонения. Не останавливаясь на доказательстве последнего утверждения, приведем физические доводы в пользу такого подхода. Действительно, при планированном изменении поперечного размера цилиндра можно считать, что для каждого положения фронта пламени с координатой \(x_f \) устанавливается стационарная волна, имеющая нормальную скорость неадиабатического пламени, вычисленную для размера цилиндра \(h(x_f) \). Если теперь из решения квазистационарной системы уравнений найти видимую скорость неадиабатического пламени \(U(x_f) = dx_f/d\tau \) как функцию \(x_f \), то можно получить эволюционное уравнение для фронта химической реакции \(x_f(\tau) \).

Получим из системы (17)–(19) квазистационарные уравнения, в которых координата фронта пламени \(x_f \) рассматривается как параметр задачи. Для этого частные производные в (17)–(19) заменим производными по переменной \(\eta \), предполагая, что температура и концентрация зависят только от \(\eta \). В полученых уравнениях коэффициенты, зависящие от \(x' \), заменим их значениями в точке \(x' = x_f \). Основанием для такой замены служит тот факт, что на масштабах порядка толщины волны вблизи фронта химической реакции скорость потока газа и расстояние между стенками цилиндра можно считать постоянными. Записанные в безразмерных переменных (20) квазистационарные уравнения имеют вид

\[
-(U + V(x_f)) \frac{dT'}{d\eta} = \frac{d^2 T'}{d\eta^2} - \Omega_g(x_f)(T' - \theta), \tag{21}
\]

\[
-U \frac{d\theta}{d\eta} = \frac{d^2 \theta}{d\eta^2} - \Omega_s(\theta - T'), \tag{22}
\]

\[
-(U + V(x_f)) \frac{dC}{d\eta} = \frac{d^2 C}{d\eta^2}. \tag{23}
\]

При выводе этих уравнений дополнительно предполагалось, что коэффициенты температуропроводности газа и материала стенок не зависят от температуры и равны коэффициенту молекулярной диффузии \(\kappa \). В (21)–(23) использованы следующие обозначения:

\[
\Omega_g(x_f) = \frac{2\alpha x_g}{h(x_f)c_{pg}\rho_g u_n^2}, \quad \Omega_s(x_f) = \frac{2\alpha \rho_s c_{pg}}{h(x_f)c_{pg}\rho_g u_n^2}. \]
а граничные условия на фронте пламени \(\eta = 0 \) — вид

\[
\frac{\partial T'_2}{\partial \eta} - \frac{\partial T'_1}{\partial \eta} = \frac{\partial C}{\partial \eta},
\]

(26)

\[
\frac{\partial C}{\partial \eta} = \exp \left(\frac{Ze(T_f - 1)}{2} \right),
\]

(27)

\[
Ze = \frac{E(T_b - T_0)}{RT_b^2},
\]

\[
T'_1 = T'_2 = T_f,
\]

(28)

\[
C = 0,
\]

(29)

\[
\theta_1 = \theta_2,
\]

(30)

\[
\frac{\partial \theta_1}{\partial \eta} = \frac{\partial \theta_2}{\partial \eta},
\]

(31)

Система (21)–(23) с граничными условиями (24)–(31) описывает квазистационарную волну горения в цилиндрическом сечении при наличии потока газа. Решения этой системы, приведенные ниже, являются приближенными решениями уравнений (17)–(19) в нулевом приближении по малому параметру задачи \(a_{h0} k \ll 1 \).

АНАЛИТИЧЕСКАЯ МОДЕЛЬ КОЛЕБАЮЩЕСЯ ПЛАМЕНИ

В этом параграфе обсуждаются аналитические решения квазистационарной системы уравнений (21)–(23), полученные для случая, когда температура стенки постоянна. Температуру стенок можно считать постоянной и равной начальной температуре смеси \((\theta = 0) \) при отсутствии нагрева стенок, например, когда \(\rho_0 / \rho_s \ll 1 \) и \(\Omega_s \to 0 \). В этом случае волн горения описывается уравнениями (21), (23) с граничными условиями (24)–(29). Рассмотрим случай, когда размер шелей постоянный: \(h = h_0 \). Такая постановка соответствует классической задаче о неadiабатическом пламени [7]. В этом случае распределение температуры в газе и концентрации недостающего компонента свежей смеся имеют вид

\[
T'_1 = T_f \exp \lambda_1 \eta, \quad T'_2 = T_f \exp \lambda_2 \eta,
\]

(32)

\[
C = 1 - \exp(-(U + V) \eta).
\]

Здесь \(\lambda_1 < 0, \lambda_2 > 0 \) — корни квадратного уравнения \(\lambda^2 + (U + V) \lambda - \Omega_g = 0 \):

\[
\lambda_1 \simeq -(U + V) \left(1 + \frac{\Omega_g}{(U + V)^2}\right), \quad \lambda_2 \simeq \frac{\Omega_g}{U + V}.
\]

Подставляя решения (32) в граничные условия (26), (27), получим неявное уравнение для нормальной скорости неадиабатического пламени:

\[
U + V = \exp \left(- \frac{Ze \Omega_g}{(U + V)^2} \right).
\]

(33)

Уравнение (33) имеет два решения, которые сливается при значении параметра теплопотерь

\[
Ze \Omega_g = \frac{2Nu Ze}{Pe_c^2} = \frac{1}{2e}.
\]

(34)

Значение нормальной скорости в точке \(Pe = Pe_c = \sqrt{4eNuZe} \), которая была названа критичекой, есть \(U + V = U_c = 1/\sqrt{\tau} \). Из (33) следует, что только при выполнении условия

\[
Pe > Pe_c = \sqrt{4eNuZe}
\]

уравнение (33) имеет действительные решения. Условие (35) означает, что пламя может распространяться в канале, диаметр которого должен быть больше критического, заданного условием (34). Подробный анализ решений (33) приведен в работе [7]. При \(Pe > Pe_c \) неявное уравнение (33) относительно нормальной скорости волны горения \(U + V \) имеет два решения. Как показано в [9], решение с меньшей величиной нормальной скорости неустойчиво относительно малых возмущений, а решение с большей скоростью устойчиво и соответствует скорости стационарного неадиабатического пламени. В отсутствие теплопотерь \(\Omega_g = 0 \) и \(U + V = 1 \).

Рассмотрим простую модель осцилляций в плоском канале переменного сечения. Такой режим может быть получен при следующих упрощающих предположениях. Будем считать, что в выражении (1) \(a \ll 1 \), а скорость потока свежей смеся зашпицем в виде

\[
V(x_f) \simeq U_c (1 - a \cos kx_f), \quad U_c = 1/\sqrt{\tau}.
\]

Заметим, что скорость потока свежей смеся в точках \(x_f = \pm L/4, L = 2\pi/k \) равна критическому значению нормальной скорости неадиабатического пламени. Предположим также,
что в этих точках достигается критическое значение параметра теплопотерь (34):

\[
\text{Pe}(\pm L/4) = \text{Pe}_c = \sqrt{4e \text{Nu} \text{Ze}}.
\]

В этом случае, согласно классическим представлениям, пламя может существовать лишь в области \(-L/4 \leq x_f \leq L/4\), причем в точках \(x_f = \pm L/4\) видимая скорость пламени \(U = dx_f/d\tau\) равна нулю. Уравнение для видимой скорости пламени имеет вид (33), в котором \(V\) и \(\Omega_g\) рассматриваются как функции координаты фронта пламени \(x_f\). При \(a \ll 1\)

\[
\text{Pe}(x_f) \simeq \text{Pe}_c\left[1 - a \cos(kx_f)\right].
\]

Теперь, разлагая правую часть (33) в ряд по малому параметру \(a\) до членов первого порядка малости и учитывая, что \(dx_f/d\tau \simeq O(\sqrt{a})\), уравнение (33) приведем к виду

\[
\left(\frac{dx_f}{d\tau}\right)^2 = \frac{a}{e} \cos(kx_f). \tag{36}
\]

Уравнение (36) описывает колебания фронта пламени, и при малой амплитуде частота колебаний \(\omega\) равна \((\pi \sqrt{2a/e})/L\). Например, при \(u_n = 40\) см/с, \(x = 0,1\) см²/с, \(L = 2,5\) см, \(a = 0,1\) частота колебаний будет \(\omega \simeq 13,6\) Гц.

РЕШЕНИЯ. ОПИСЫВАЮЩИЕ РАСПРОСТРАНЕНИЕ ПЛАМЕНИ В КАНАЛЕ ПЕРЕМЕННОГО СЕЧЕНИЯ

Решения линейной системы уравнений (21)-(23) с учетом граничных условий имеют следующий вид:

\[
T'_1 = (T_f - A) \exp(\lambda_1 \eta) + A \exp(\lambda_2 \eta), \tag{37}
\]

\[
T'_2 = (T_f - B) \exp(\lambda_3 \eta) + B, \tag{38}
\]

\[
\theta_1 = r_1(T_f - A) \exp(\lambda_1 \eta) + r_2 A \exp(\lambda_2 \eta), \tag{39}
\]

\[
\theta_2 = r_3(T_f - B) \exp(\lambda_3 \eta) + B, \tag{40}
\]

\[
C = 1 - \exp(-(V + U) \eta). \tag{41}
\]

При \(\lambda_1, \lambda_2 > 0\) и \(\lambda_3 < 0\) эти решения удовлетворяют условиям (24), (25). Подставим решения (37)-(40) в (21), (22) и приравняем к нулю выражение при \(\exp(\lambda \eta)\). Тогда коэффициенты \(r_i\) приобретают вид

\[
r_i = -\frac{1}{\Omega_g} (\lambda_i^2 + (V + U) \lambda_i - \Omega_g) = -\frac{\Omega_s}{\Omega_g} \left(1 + \frac{V}{\lambda_i + U}\right), \tag{42}
\]

и характеристическое уравнение, корни которого есть \(\lambda_i\), — вид

\[
\lambda^3 + (2U + V)\lambda^2 + (U(V + U) - \Omega_s - \Omega_g)\lambda - \Omega_s(U + V) + \Omega_g U = 0. \tag{43}
\]

В дальнейшем будем считать, что все корни этого уравнения действительны и ограничимся случаем

\[
\lambda_1, \lambda_2 > 0, \quad \lambda_3 < 0.
\]

Подставляя решения (37)-(40) в граничные условия на фронте пламени (30), (31), найдем связь между коэффициентами \(A, B\) и температурой газа на фронте пламени \(T_f\):

\[
\lambda_1 r_1(T_f - A) + \lambda_2 r_2 A = \lambda_3 r_3(T_f - B), \tag{44}
\]

\[
r_1(T_f - A) + r_2 A = r_3(T_f - B) + B. \tag{45}
\]

Границное условие (26) после подстановки решений (37), (38), (41) имеет вид

\[
(\lambda_3 - \lambda_1)T_f - \lambda_3 B + (\lambda_1 - \lambda_2)A = U + V. \tag{46}
\]

Из граничного условия (27) получим связь температуры на фронте пламени со скоростью распространения волны горения:

\[
T_f = 1 + \frac{1}{Ze} \ln(U + V). \tag{47}
\]

Следует отметить, что в (47) не входят параметры, описывающие теплообмен со стенками канала. Исключив коэффициенты \(A\) и \(B\), из уравнений (44), (45) найдем скорость и температуру на фронте при заданной скорости потока газа.

Рассмотрим частный случай решения системы (21)-(23), когда \(\Omega_s = 0\). В этом случае эволюционное уравнение для фронта пламени имеет вид (33). Решения уравнения (33) исследовались численно. Зависимости \(U(x_f)\) приведены на рис. 2, 3. На рис. 2 кривые 1, 3 — решения уравнения (33) при
Физика горения и взрыва, 2001, т. 37, № 1

Рис. 2. Зависимости $U(x_f)$ при $\text{Pe}(x') = 2.2\text{Pe}_c[1 + a \cos(2\pi x'/L)]$, $Z_e = 10$, $\text{Nu} = 10$, $\sigma = 0$, $L = 1000$, $a = 0, 5$:

кривые 1, 3 рассчитаны для случая, когда $V(L/2) = U_c = e^{-1/2}$ в точке минимального сечения $x' = L/2$, кривые 2, 4 — для скорости в фильтровидной вида $V(x') = U_c/[1 + a \cos(2\pi x'/L)]$; кружок — точка стабилизации пламени; решения 1, 2 устойчивы и моделируют волну горения, 3, 4 — неустойчивы

$\text{Nu} = 10$, $Z_e = 10$, $L = 1000$, $a = 0, 5$,

$$\text{Pe} = 2.2\text{Pe}_c\left(1 + a \cos \frac{2\pi x'}{L}\right),$$

$$V = \frac{0.5U_c}{1 + a \cos(2\pi x'/L)},$$

$$V = \frac{0.9U_c}{1 + a \cos(2\pi x'/L)}.$$

Кривая 1 соответствует устойчивому решению (33) с большей скоростью распространения, а 3 — неустойчивому решению с меньшей скоростью. Видимая скорость волны такого типа может меняться в пределах $0 \leq U \leq 1$ в зависимости от значения скорости потока свежего газа. Если скорость потока бывает равна нормальной скорости неадабатического пламени в некотором сечении, можно ожидать, что в этой точке установится неподвижная относительно стенок канала волна горения. Такая ситуация описывается кривой 2, соответствующей устойчивому решению (33) при тех же теплофизических параметрах задачи, что и для кривых 1, 3 в случае, когда скорость потока свежей смеси $V = U_c/[1 + a \cos(2\pi x'/L)]$. На рис. 2 отмечена точка стабилизации, в которой устанавливается неподвижная относительно стенок канала волна горения. При случайных отклонениях фронта пламени от точки стабилизации волна горения будет возвращаться в прежнее положение. Кривая 4 — неустойчивое решение с низкой скоростью распространения, полученное из (33) при тех же параметрах задачи, что и для решения 2.

Значительно интереснее с физической точки зрения поведение интегральных кривых (33) на фазовой плоскости в случае, когда распространение пламени, согласно классическим представлениям [7], оказывается невозможным при некоторых размерах канала. Решения, представленные на рис. 3, построены для $\text{Nu} = 10$, $Z_e = 10$, $L = 1000$, $a = 0, 5$ и для случая, когда

$$\text{Pe}(x_f) = 1.2\text{Pe}_c[1 + a \cos(2\pi x_f/L)].$$

Из этого выражения следует, что волна горения может существовать лишь в той области канала, где

$$\text{Pe}(x_f) \geq \text{Pe}_c, \quad \left|2\pi x_f/L\right| \leq \text{arccos}(-1/3).$$

Решения 1–3 построены для случая, когда скорость свежего газа была задана соответственно выражениями

$$V = \frac{0.5U_c}{1 + a \cos(2\pi x'/L)},$$

$$V = \frac{0.9U_c}{1 + a \cos(2\pi x'/L)},$$

$$V = \frac{1.1U_c}{1 + a \cos(2\pi x'/L)}.$$

При $\text{Pe}(x) > \text{Pe}_c$ имеется два значения скорости распространения волны горения, одно из которых устойчиво, а другое, меньшее по величине, неустойчиво. Решение 1 описывает ситуацию, когда волна горения существует лишь некоторое время после зажигания, а затем затухает. Это следует из рис. 3, в точке зажигания пламени $(x' = x'_X; \text{Pe}(x'_X) = \text{Pe}_c)$ скорость волны положительна, а то время как волна не может продвинуться в область $x' > x'_X$, где поперечный размер щели слишком мал для существования пламени:

$$x' > x'_X: \text{Pe}(x) < \text{Pe}_c.$$

Отметим, что перечисленные нестационарные процессы затухания волны горения не описываются в рамках данного приближения. Решение 2 на рис. 3 описывает режим колебаний пламени в канале переменного размера. Волна горения в процессе распространения достигает точки, обозначенной светлым кружком на рис. 3, в которой видимая скорость пламени...
меняет знак, а волна меняет направление движения. Поскольку такая же точка существует и при отрицательных значениях x_f, можно предположить, что пламя будет осиливать между этими точками. Следует отметить, что при движении в спутном направлении с потоком свежей смеси волна горения описывается неустойчивым решением (33). Поэтому такой режим возможен лишь в случае, когда волна горения не распадается из-за неустойчивости за время движения в спутном направлении. Кривая 3 на рис. 3 описывает процесс установления в точке стабилизации пламени неподвижной относительно стенок канала волны горения, устойчивой к внешним возмущениям. Рассмотрим случай, когда температура стенок канала непостоянна ($\Omega_s \neq 0$). На рис. 4 показана зависимость видимой скорости волны горения U от координаты фронта пламени x_f, рассчитанная для условий

\[\text{Nu}=10, \quad \text{Ze}=10, \quad L=1000, \]

\[a=0.5, \quad \sigma=0.01, \]

решение получено для случая $V(x^{'}) = U_c(1 + a \cos(2\pi x'/L))$, где $\sigma=1, L=1000, a=0.5$; $V(x^{'}) = U_c(1 + a \cos(2\pi x'/L))$, где $\sigma=1, L=1000, a=0.5$.

В широкой части канала нормальная скорость пламени слабо отличается от скорости неизохронного пламени, распространяющегося в канале с постоянной температурой стенок, как в модели [7]. Такой режим распространения, который можно назвать режимом высоких скоростей, описывается устойчивой кривой при $0 < x_f < x_A$. В точке A, где $Pe(x_A) \approx Pe_c$, распространение пламени невозможно, согласно классическим представлениям, так как при $x_f > x_A$ волна горения не может пройти через участок с низкой температурой. Учет нагрева стенок приводит к появлению нового режима распространения пламени с малой видимой скоростью волны, который можно назвать режимом низких скоростей, описанным в [4, 5]. Достигнув точки A, волна горения не может охладиться до постоянной температуры AB, так как на этом участке волна, имея положительную видимую скорость ($U > 0$), не может распространяться в сторону уменьшения x_f. В то же время дальнейшее распространение волны горения возможно в случае перехода (стрелка с точкой A) в режим распространения с низкой скоростью. Переход от режима высоких скоростей к режиму низких скоростей — существенно нестационарный процесс, описание которого
выходит за рамки используемого квазистационарного приближения. Описание такого перехода, по-видимому, можно получить из численного решения полной системы (3)-(5). В узкой части канала, между точками A и D, пламя может распространяться в режиме низкой скорости из-за передачи тепла из области продуктов горения в свежую смесь за счет теплопроводности стенок канала. Расстояние между стенками канала минимально при $x_f = 500$. Проблема точки минимального сечения волна горения увеличивается скорость и может перейти в режим распространения с высокой скоростью (возможные переходы показаны на рис. 4 стрелками, соперничающими точки C и D). Участок кривой CD описывает физически нерельевую ситуацию по той же причине, что и участок AB. Какой из этих переходов моделирует поведение волны горения, можно, по-видимому, найти в численном решении системы (3)-(5). Таким образом, распространение пламени в канале переменного сечения в некоторых случаях может представлять собой чередование режимов горения с высокими и низкими скоростями. Возможно также распространение волны горения только в режиме высокой скорости или только в режиме низкой скорости в зависимости от минимального поперечного размера канала и других параметров задачи.

ЗАКЛЮЧЕНИЕ

Несмотря на грубую одномерную постановку, не учитывающую двумерное распределение температуры в газовой фазе, а также использование квазистатического приближения, модель позволяет оценить среднюю скорость распространения пламени в каналах переменного сечения при истечении потока газа. Показано, что в угле нагрева стенок канала распространяют пределы распространения пламени, задаваемые классической теорией неadiабатического пламени Зельдовича. Создана аналитическая модель колебаний пламени в плоском переменного сечения. Показано, что в таких системах средняя скорость волны горения может изменяться от больших значений (порядка нормальной скорости неadiабатического пламени [7]), до низких значений (как при низкокосерном фильтрационном горении газов в пористой среде [1]).

ЛИТЕРАТУРА

7. Зельдович Я. Б. Теория предела распространения тихого пламени // ЖЭТФ. 1941. Т. 11, вып. 1. С. 159–168.

Поступила в редакцию 8/IX 1999 г.