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В работе рассматривается численное решение волнового уравнения. В алгоритме решения использу-
ются оптимальные параметры, значения которых получаются с применением преобразования Лагерра по
времени к волновому уравнению. В разностную схему уравнения 2-го порядка аппроксимации вводятся
дополнительные параметры. Оптимальные значения этих параметров получаются минимизацией по-
грешности разностной аппроксимации уравнения Гельмгольца. После проведения обратного преобразо-
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с оптимальными параметрами. Оно разностное по пространственным переменным и дифференциальное
по времени. Предлагается итерационный алгоритм решения дифференциально-разностного волнового
уравнения с оптимальными параметрами. Рассмотрены 1- и 2-мерные случаи уравнений. Приводятся ре-
зультаты численных расчетов дифференциально-разностных уравнений. Показано, что использование
разностных схем с оптимальными параметрами ведет к повышению точности решения уравнений.
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The paper deals with a numerical solution of the wave equation. The solution algorithm uses optimal
parameters which are obtained by using Laguerre transform in time for the wave equation. Additional param-
eters are introduced into a difference scheme of 2nd-order approximation for the equation. The optimal values
of these parameters are obtained by minimizing the error of a difference approximation of the Helmholtz
equation. Applying the inverse Laguerre transform in the equation for harmonics, a differential-difference
wave equation with the optimal parameters is obtained. This equation is difference in the spatial variables
and differential in time. An iterative algorithm for solving the differential-difference wave equation with the
optimal parameters is proposed. 2-dimensional and 1-dimensional equations are considered. The results of
numerical calculations of the differential-difference equations are presented. It is shown that the difference
schemes with the optimal parameters give an increase in the accuracy of solving the equations.
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Введение

Важным показателем качества численного алгоритма является точность получаемого
решения уравнений [1–4]. Существуют различные способы повышения точности аппрок-
симации дифференциальных уравнений [4–6] и повышения точности решения уравнений,
например использование разностных схем более высокого порядка аппроксимации или
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построение разностных схем, минимизирующих погрешность дисперсионного соотноше-
ния (dispersion–relation–preserving) [7]. Ко второму типу схем относятся так называемые
оптимальные разностные схемы.

В работе оптимальными называются разностные схемы, параметры которых опреде-
ляются минимизацией некого функционала. В данной статье параметры определяются
минимизацией погрешности разностной аппроксимации уравнения Гельмгольца.

В работе [8] была предложена оптимальная разностная схема для решения волно-
вого уравнения в спектральной области. В уравнении проводится преобразование Фу-
рье по временной переменной. В разностное уравнение 2-го порядка аппроксимации для
гармоники Фурье вводятся три дополнительных параметра. Значения этих параметров
определяются минимизацией интегральной погрешности численного решения на точном
аналитическом решении. Алгоритм рассматривается при равных пространственных ша-
гах разностной сетки. Обобщение для неравных шагов было предложено в работе [9]
путем введения средних значений в пространственные производные. Здесь оптимизация
проводилась по 4-м параметрам.

В работах [10–12] такая методика построения оптимальных разностных схем была
применена при решении уравнений с использованием спектрального преобразования Ла-
герра. В этих работах была рассмотрена оптимальная разностная схема 2-го порядка
аппроксимации для решения уравнений Максвелла и для решения волнового уравне-
ния, основанная на разложении Лагерра по временной переменной. Здесь оптимизация
проводилась по 4-м параметрам.

В отличие от преобразования Фурье, при преобразовании Лагерра все переменные
остаются действительными. Кроме этого, для многих функций их спектр Лагерра у́же
спектра Фурье. Это упрощает вычисления и сокращает время счета задачи.

Во всех этих случаях сначала решались уравнения для спектральных гармоник, и за-
тем решение уравнений получались обратным преобразованием из спектральной области
в действительную.

В настоящей работе рассматривается волновое уравнение, учитывающее релаксации
параметров среды. Здесь преобразование Лагерра привлекается лишь для получения оп-
тимальных параметров разностных схем. В разностных уравнениях для гармоник Лагер-
ра с оптимальными параметрами проводится обратное преобразование Лагерра, и таким
образом получается дифференциально-разностное уравнение. Это уравнение разностное
по пространственным переменным и дифференциальное по времени. Полученные урав-
нения решаются конечно-разностным методом с итерациями по малым оптимальным
параметрам.

Предлагаемые методы построения дифференциально-разностных уравнений являют-
ся простой модернизацией обычных уравнений, но они позволяют получить более точное
решение уравнений.

В работе приведены результаты тестовых расчетов дифференциально-разностных
уравнений с оптимальными параметрами. Рассмотрены 1- и 2-мерные постановки за-
дачи.

1. Постановка задачи

Будем рассматривать волновое уравнение вида

1

V 2

∂2E

∂t2
+ γ

∂E

∂t
+ χ

∂m

∂t
=
∂2E

∂x2
+
∂2E

∂z2
+ S(t, x, z),

∂m

∂t
= −λm− νE, (1)
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в прямоугольной пространственной области 0 ≤ x ≤ L, 0 ≤ z ≤ L, где L — размер
области, при нулевых граничных и начальных условиях:

E(t = 0, x, z) = 0,
∂E(t = 0, x, z)

∂t
= 0, m(t = 0, x, z) = 0, t ≥ 0.

Здесь V — скорость волны, S(t, x, z) — источник волн, γ — коэффициент поглощения.
Величины γ, χ, ν являются функциями координат x, z. Переменная m учитывает зави-
симость параметров среды от времени.

Это уравнение описывает как распространение упругих волн, так и распространение
электромагнитных волн. В первом случае E — это давление и V — это скорость упругих
волн, во втором случае E — это напряженность электрического поля и V — это скорость
электромагнитных волн.

К этому уравнению можно свести систему двумерных уравнений Максвелла [13, 14]

∂Hx

∂z
− ∂Hz

∂x
= ε

∂Ey
∂t

+ σEy + εsm+ Jy, (2)

∂Ey
∂z

= µ
∂Hx

∂t
, (3)

∂Ey
∂x

= −µ∂Hz

∂t
, (4)

∂m

∂t
= −m

τD
− 1

τ2D

(
1− τE

τD

)
Ey, (5)

где H = (Hx, Hy, Hz) — напряженность магнитного поля, E = (Ex, Ey, Ez) — напряжен-
ность электрического поля, J = (Jx, Jy, Jz) — ток внешнего источника, ε — диэлектри-
ческая проницаемость, µ — магнитная проницаемость.

В этих уравнениях учитывается зависимость диэлектрической проницаемости и про-
водимости среды от времени введением дополнительного уравнения для переменной m,
содержащей времена релаксации электромагнитных параметров. Здесь введены эффек-
тивные значения диэлектрической проницаемости ε и проводимости σ:

ε = εs
τE
τD

+ σsτσ, σ = σs + εs
1

τD

(
1− τE

τD

)
,

где εs — статическое значение диэлектрической проницаемости, τE — время релаксации
напряженности электрического поля, τD — время релаксации электрической индукции,
σs — статическое значение проводимости, τσ — время релаксации проводимости [1, 3].

В частном случае малых τE , τD, τσ, и τE/ τD ' 1 получим m = 0, и эта система
уравнений примет стандартный вид уравнений Максвелла [13, 14].

Продифференцировав по времени уравнение (2) и подставив в него выражения из
уравнений (3) и (4), при µ = const получим для электрического поля Ey уравнение
вида (1), где источник имеет вид S(t, x, z) = −µ∂Jy

∂t
.

Систему уравнений (2)–(5) можно использовать для оценки точности решения вол-
нового уравнения (1).
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Проведем преобразование Лагерра по времени [15] уравнений (1):

En =

∫ ∞
0

E(t)(ht)−
α
2 lαn(ht) d(ht), (6)

E(t) = (ht)
α
2

∞∑
n=0

n!

(n+ α)!
Enl

α
n(ht), (7)

где lαn(ht) — ортогональная функция Лагерра [15] степени n, α — целая константа, h —
параметр преобразования Лагерра. В результате получим уравнение для n-й гармоники
Лагерра

∂2En
∂x2

+
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∂z2
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h2
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1

4
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k=0

(n− 1− k)Ek

)
+ γh

(
1

2
En +

n−1∑
k=0

Ek

)
+
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2
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k=0
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)
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(
1

2
mn +

n−1∑
k=0

mk

)
= −λmn − νEn. (8)

Рассмотрим разностную аппроксимацию этого уравнения.

2. Аппроксимация уравнений

Заменим производные конечными разностями второго порядка аппроксимации и за-
пишем уравнение (8) в разностном виде, используя средние значения гармоник Лагерра:

Ēi,j+1 − 2Ēi,j + Ēi,j−1
∆x2

+
Ei+1,j − 2Ēi,j + Ēi−1,j

∆z2
+ Sn,i,j
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V 2
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4
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+
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)
,

h

(
1

2
mn,i,j +

n−1∑
k=0

mk,i,j

)
= −λmn,i,j − ν 〈En 〉.

Здесь в правой части уравнения гармоники поля заменены средними значениями по 5-и
точкам [10–12]:

〈Ek 〉 = cEk,i,j + d(Ek,i+1,j + Ek,i−1,j) + g(Ek,i,j+1 + Ek,i,j−1), (10)

где c, d, g — весовые множители, удовлетворяющие условию c+ 2d+ 2g = 1.

В разностных производных по z использованы [10–12] средние значения для поля
вида

Ēi,j =
1− β

2
En,i,j+1 + βEn,i,j +

1− β
2

En,i,j−1, (11)

и в разностных производных по x использованы средние значения вида
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Ēi,j =
1− α

2
En,i+1,j + αEn,i,j +

1− α
2

En,i−1,j . (12)

Разностное уравнение (9), содержащее дополнительные параметры α, β, c, d, g, ап-
проксимирует уравнение (8) со вторым порядком.

Подберем введенные параметры α, β, c, d, g таким образом, чтобы точность аппрок-
симации уравнения [10–12] была наиболее высокой.

3. Выбор оптимальных параметров

Уравнение (8) для нулевой гармоники поля E = E0y можно представить в виде одного
уравнения Гельмгольца. Без учета источников уравнение (8) принимает простой вид

∂2E

∂x2
+
∂2E

∂z2
= k20E, k20 =

h

2

(
h

2V 2
+ γ − χν

h
2 + λ

)
. (13)

В случае электромагнитных волн

k20 = µ
h

2

(
ε
h

2
+ σ

)
.

Это уравнение на разностной сетке можно записать [10–12], применяя средние значе-
ния поля, приведенные в предыдущем пункте:

Ēi+1,j − 2Ēi,j + Ēi−1,j
∆z2

+
Ēi,j+1 − 2Ēi,j + Ēi,j−1

∆x2

= k20
(
cEk,i,j + d(Ek,i+1,j + Ek,i−1,j) + g(Ek,i,j+1 + Ek,i,j−1)

)
. (14)

Уравнение (13) имеет точное решение

E = E0ch(kxx)ch(kzz), k2x + k2z = k20, kx = k0 sin θ, kz = k0 cos θ.

Подставим это решение в разностное уравнение (14). После преобразований получим
[10–12] уравнение V 2(θ, k) = 1, где

V 2(θ, k) =

((
(1− α)ch

(
k cos θ

r

)
+ α

)(
ch(k sin θ)− 1

)
+

r2
(
(1− β)ch(k sin θ) + β

)(
ch

(
k cos θ

r

)
− 1

))/
k2
(
c/2 + d

(
ch

(
k cos θ

r

))
+ g
(
ch(k sin θ)

))
(15)

и r = ∆x/∆z, k = k0∆x.

Будем искать параметры α, β, c, d, g, требуя максимально точного выполнения равен-
ства V 2(θ, k) = 1 в пределах допустимых значений θ, k. Для этого определим функционал
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F (u) = F (α, β, c, d, g) =

∫ ∫ (
1− V (θ, k)

)2
dθ dk, (16)

где u = (α, β, c, d, g) — вещественный вектор искомых параметров.
Пределы интегрирования по углу θ — отрезок [0, π/2], пределы интегрирования по

второй переменной — от k = 0 до k = K. Величина k определяет отношение шага
разностной сетки ∆x к характерному размеру 1/k0 изменения решения. Брать величину
верхнего предела интегрирования K значительно больше единицы не имеет смысла по
причине очевидной потери точности.

Будем искать точку минимума функционала (16) при заданных значениях r, K по
параметрам α, β, c, d, g.

Для минимизации функционала будем использовать итерационный метод Ньюто-
на [16]. Он требует вычисления первой и второй производных функционала F (u). Про-
изводные F (u) по параметрам α, β, c, d, g легко вычисляются, т. к. выражение под ин-
тегралом и функция V (θ, k) имеют явный вид.

Минимальное значение функционала F (u) при заданных значениях r, K обозначим
I(r,K) = min F (u). Значения параметров α, β, c, d, g в точке минимума функциона-
ла F (u) будем называть оптимальными параметрами. В случае одномерного волнового
уравнения легко получить аналог уравнения (15). Для этого в (15) достаточно положить
α = 1, β = 1, θ = 0, ∆x = ∆z, r = 1, g = 0, оставив интегрирование в (16) только по k.

В таблице приведены некоторые оптимальные значения параметров и интеграла
I(r,K) в зависимости от соотношения шагов разностной сетки r = ∆x/∆z и верхне-
го предела K в интеграле (16) для трех разных случаев.

Часть из них приведены в работах [10–12]. Там они указаны с точностью до 4-х, 5-ти
знаков, здесь они указаны с точностью до 5-ти, 6-ти знаков. Для дифференциально-
разностных уравнений естественно иметь максимально точные значения параметров
уравнений.

Таблица.

α β c d g I(r,K) r K

0.91204 0.80209 0.66885 0,082963 0.082613 4.0427e−06 1.5 0.5
0.91604 0.81110 0.67522 0.081873 0.080517 5.9645e−05 1.5 1.0
0.92221 0.82497 0.68528 0.080132 0.077226 2.6459e−04 1.5 1.5
0.92987 0.84222 0.69829 0.077839 0.073014 6.9931e−04 1.5 2.0

1 1 0.76519 0.049635 0.067770 4.5674e−02 1.5 0.5
1 1 0.76738 0.050057 0.066255 4.2507e−02 1.5 1.0
1 1 0.77105 0.050626 0.063847 3.7882e−02 1.5 1.5
1 1 0.77623 0.051171 0.060716 3.2569e−02 1.5 2.0

0.83481 0.082595 6.8792e−06 0.5
0.83911 0.080447 1.0078e−04 1.0
0.84583 0.077083 4.4175e−04 1.5
0.85442 0.072789 1.1476e−03 2.0

Первые четыре строчки таблицы получены при минимизации по 5-ти параметрам α,
β, c, d, g и при r = ∆x/∆z = 1.5.

Следующие четыре строчки получены при минимизации по 3-м параметрам c, d, g,
также при r = ∆x/∆z = 1.5, но в отсутствие усреднения в пространственных производ-
ных, т. е. при α = 1, β = 1.

Последние четыре строчки таблицы соответствуют одномерному случаю. Здесь ми-
нимизация проводилась по 2-м параметрам c, d.
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Малые значения K < 0.5 соответствуют слабо меняющимся решениям. В таблице
приведены значения параметров при 0.5 < K < 2. В этой области оптимальное значе-
ние интеграла I(r,K) растет с ростом K в первом и третьем случаях, в втором случае
значение интеграла I(r,K) падает с ростом K.

Наименьшее значение I(r,K) достигается в первом случае при минимизации по 5-ти
параметрам. Несколько больше значения I(r,K) в третьем случае, который относится к
одномерным уравнениям. Во втором случае, при минимизации по 3-м параметрам c, d, g,
величина интеграла I(r,K) более чем на порядок превышает соответствующие величины
в других двух случаях.

Из значений I(r,K) следует, что применение оптимальных параметров наиболее эф-
фективно в случае оптимизации по 5-ти параметрам α, β, c, d, g и в одномерном случае,
а наименее эффективно во втором случае.

Если в системе уравнений (9) провести обратное преобразование Лагерра, то с учетом
оптимальных параметров уравнения системы примут вид

Ēi,j+1 − 2Ēi,j + Ēi,j−1
∆x2

+
Ēi+1,j − 2Ēi,j + Ēi−1,j

∆z2
+ Sn,i,j

=
1

V 2

(
c
∂2Ei,j
∂t2

+ d

(
∂2Ei+1,j

∂t2
+
∂2Ei−1,j
∂t2

)
+ g

(
∂2Ei,j+1

∂t2
+
∂2Ei,j−1
∂t2

))
+

(17)

γ

(
c
∂Ei,j
∂t

+ d

(
∂Ei+1,j

∂t
+
∂Ei−1,j
∂t

)
+ g

(
∂Ei,j+1

∂t
+
∂Ei,j−1
∂t

))
+ χ

∂mi,j

∂t
,

∂mi,j

∂t
_ = −λmi,j − ν

(
cEk,i,j + d(Ek,i+1,j + Ek,i−1,j) + g(Ek,i,j+1 + Ek,i,j−1)

)
.

Это система дифференциально-разностных уравнений. Они разностные по простран-
ству и дифференциальные по времени.

Значения оптимальных параметров зависят только от соотношения пространствен-
ных шагов разностной схемы. В этом смысле они являются универсальными для системы
дифференциально-разностных уравнений.

Из метода получения оптимальных параметров следует, что этот метод легко распро-
страняется на 3-мерный случай уравнений.

Из таблицы видно, что параметры d и g значительно меньше параметра c. Для перво-
го случая (первые четыре строчки таблицы) разница в 8 или 9 раз. Для двух последних
случаев разница в значениях больше чем в 10 раз. Поэтому в первом уравнении системы
(17) производные по времени с параметрами d и g являются малой поправкой. Учи-
тывая это, можно использовать итерационный алгоритм численного решения системы
дифференциально-разностных уравнений.

Возможны различные варианты формулы (10) усреднения 〈Ek 〉. Таких вариантов не
менее десятка. В общем случае среднее 〈Ek 〉 можно представить в виде

〈Ek 〉 = cEk,i,j +
∑
m

sm
∑
p,q

Ek,p,q. (18)

Если параметры sm значительно меньше параметра c, то при итерационном методе учета
малых поправок в сумме (18) можно использовать большое количества пространствен-
ных точек.

В работе применялся метод простой итерации, где на первом шаге решалась система
уравнений при d = 0, g = 0. Здесь для решения использовалась простая 3-х слойная
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явная схема “крест”. На следующих шагах полученные на предыдущем шаге значения
электрического поля Ei,j использовались для аппроксимации производных по времени
при параметрах d и g со вторым порядком.

В проведенных расчетах выполнялось 5–7 итераций.
Описанный итерационный алгорим очень удобен при его практической реализации.

Учет оптимальных параметров состоит в добавлении в программу решения волнового
уравнения около двух десятков операторов (строк). Это составляет всего несколько пер-
вых процентов от размера программы.

Кроме этого, такой итерационный алгоритм позволяет использовать разное число
оптимальных параметров без существенного изменения алгоритма и размера программы.

4. Результаты численных расчетов

Решение уравнения (1) конечно-разностным методом 2-го порядка аппроксимации с
оптимальными параметрами (17) будем сравнивать с решением этих уравнений конечно-
разностным методом 4-го порядка аппроксимации по пространству без оптимальных па-
раметров. В обоих случаях по времени будем использовать 2-й порядок аппроксимации.

Источник тока брался в виде

Jy = f(t)δ(z − zs), f(t) = J0 exp

(
−
(
2πf0(t− t0)

)2
γ2

)
sin
(
2πf0(t− t0)

)
, (19)

где f0 — несущая частота источника, t0— момент центра импульса источника, zs— точка
расположения источника.

Точность решения оценивалась по величине относительной погрешности решения D,
которая определялась выражением

D(t) =

∫∞
0 |Ey(z, t)− E0y(z, t)| dz∫∞

0 |E0y(z, t)| dz
, (20)

здесь Ey = E — решение уравнений (1), полученное с использованием конечно-разност-
ной схемы с оптимальными параметрами (17), E0y — решение уравнений (1), полученное
с использованием конечно-разностной схемы 4-го порядка аппроксимации. На рисунках,
приведенных ниже, решение этой конечно-разностной схемой показано сплошной линией.

На рис. 1 показано прохождение электромагнитной волны от точечного источника
(Ey — компоненты поля) через слой, расположенный в однородной среде. Точками вни-
зу показано расположение слоя в среде. Сплошная линия соответствует решению урав-
нений конечно-разностной схемой 4-го порядка аппроксимации. Показано прохождение
импульсом через левую границу слоя. Шаги разностной схемы ∆x = 0.05, ∆x/∆z = 1.5.
На рисунке штрихованная линия соответствует решению обычной неоптимальной раз-
ностной схемой 2-го порядка. Указана величина погрешности D1 для этого решения.

На этом же рис. 1 приведено решение оптимальной разностной схемой 2-го поряд-
ка аппроксимации 5-ю параметрами (17) при α = 0.92987, β = 0.84222, A = 0.69829,
d = 0.077839, g = 0.073014, r = ∆x/∆z = 1.5, K = 2 (4-я строка таблицы). Для него
также указана величина погрешности решения D2. Графически это решение совпада-
ет с решением разностной схемой 4-го порядка аппроксимации. Решение получено при
пробеге импульсом расстояния в 10–12 длин волн.

Оптимальная схема (17) дает существенно более точное решение по сравнению с
неоптимальной схемой. Погрешности D1 и D2 отличаются более чем в 10 раз.
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Рис. 1. Решение двумерных уравнений (1) неоптимальной схемой (штриховая линия) и опти-
мальной схемой (сплошная линия). Решение уравнений разностной схемой 4-го порядка аппрок-
симации и решение оптимальной разностной схемой графически совпадают

На рис. 2 приведена погрешность решения оптимальной разностной схемой 2-го по-
рядка аппроксимации 3-я параметрами (17) при α = 1, β = 1, A = 0.77623, d = 0.051171,
g = 0.060716, r = ∆x/∆z = 1.5, K = 2 (8-я строка таблицы). Это схема дает более точное
решение, чем схема без оптимальных параметров, она уступает по точности схеме с 5-ю
параметрами.

На этом же рисунке приведено решение волнового уравнения в одномерном случае.
Показано прохождение электромагнитной волны от точечного источника (Ey — компо-
ненты поля) через слой, расположенный в однородной среде. Точками показано распо-
ложение слоя в среде. Шаг разностной схемы ∆z = 0.033.

Рис. 2. Решение одномерных уравнений (1) неоптимальной схемой (штриховая линия) и опти-
мальной схемой (сплошная линия). Решение уравнений разностной схемой 4-го порядка аппрок-
симации и решение оптимальной разностной схемой графически совпадают
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Сплошная линия соответствует решению уравнений конечно-разностной схемой 4-го
порядка аппроксимации, штрихованная линия соответствует решению разностной схе-
мой 2-го порядка без оптимальных параметров. Указана величина погрешности для это-
го решения D1, а также указана величина погрешности D2 для решения оптимальной
схемой с двумя оптимальными параметрами, приведенными в таблице при c = 0.83481,
d = 0.082595, K = 0.5.

Решение оптимальной схемой графически совпадает с решением разностной схемой
4-го порядка точности. Решение получено при пробеге импульсом расстояния в 15–17
длин волн. Показано прохождение импульсом через правую границу слоя.

Оптимальная схема дает существенно более точное решение по сравнению с неопти-
мальной схемой. Погрешности D1 и D2 отличаются более чем в 20 раз.

5. Заключение

Дифференциально-разностные уравнения, построенные с привлечением преобразова-
ния Лагерра, позволяют получать более точное решение волнового уравнения. Это верно
для 1- и 2-мерных случаев. Решение получается методом простой итерации по малым
оптимальным параметрам. Это позволяет использовать разное число оптимальных пара-
метров в уравнениях. Оптимальные схемы с 5-ю оптимальными параметрами дают более
точное решение, чем оптимальные схемы с 3-я оптимальными параметрами. Оптималь-
ные схемы являются простой модернизацией обычных неоптимальных разносных схем,
но их применение позволяет получать более точное решение задачи. Значения оптималь-
ных параметров зависят только от отношения пространственных шагов разностной схе-
мы и в этом смысле они являются универсальными, как и дифференциально-разностные
уравнения.
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