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B ceBepnoii yactu Tapumckoro OacceifHa mpu OypeHHH NEPMCKUX OTI0KEHHH BBIABICHO OOJBIIOE KO-
JIMYECTBO MOIIHBIX MarMaTHYECKUX TeJl. VIX IUTONOTHS U CKOPOCTH CEHCMUYECKUX BOJIH B HUX PE3KO M3MEHS-
I0TCS, YTO OKa3bIBACT 3HAYMTEIBHOE BIUSHUE HA MUTPALMOHHOE H300paKeHNE «OyCHHOBHIHBIX» OTPAKCHHUH.
Jnst pa3Benkn M pa3pabOTKH KOJUIEKTOPOB OYEHb BAXKHO IPOBOAUTEH AETAIBHOE JINTOJIOTMYECKOE OIpesielie-
HHE U BBICOKOTOYHOE CKOPOCTHOE MOJEIMPOBAHHE MarMaTHuecKuX Iopoj. B Hacrosimiel crarbe nmpuBOIUTCS
METOJl T€0CTaTUCTUYECKOH MHBEPCHHU JIUIs ONpPE/SNICHHs 3aKOHOMEPHOCTEH JIMTOJIOTHYECKOr0 PacipeaesIeH s
MarMaTH4ecKux IMopoJl U CKOPOCTHOTO MOZICIMPOBaHus B obnactu PyroaHb ceBepHoit yactu Tapumckoro Oac-
ceiiHa. Pe3ynbrarhl MOKa3bIBalOT, YTO MPUMEHECHUE METO/Ia T€0CTATHCTUYECKOH HHBEPCHH 3HAYMTEIBHO MOBBI-
AT pa3pelieHe JUTONIOIHYECKUX ONpPEISICHH, YTO TOMOTraeT Jy4llie HOHATh PAcHpeieieHHe TePMCKHX
MarmMaTu4ecKkux nopoj B oonacti Oyroans. CpaBHEHHE KIIACCU(PHUKAIMOHHBIX KapT ceficMudyecknx (anuii 00-
JaCTH MCCJIEIOBAHMS MOKA3bIBACT, YTO MOJIYyUCHHAs! CKOPOCTHAsE MOJIENb XOPOIIO OTPaKaeT JIaTepalibHOe pac-
Hpe/eJICHNe MarMaTH4eckux nopoA. Takke JaHHAs MOZAENb HOAPOOHO M ¢ OONBIIOH TOYHOCTBIO ONpeeseT
N3MEHEHHUSI CKOPOCTeH B MarMaTnieckux noponax. Cpensis omubKa ONPEAesICHHs CKOPOCTH B CKBaXKHHAX,
HCTIONB3yeMBIX B HHBEPCHH, COCTAaBIsIET MeHee 2 Y%, a MUHHMalIbHAs CpeqHss omuoka ckopoctn — 0.23 %.
[Nomyuennast ckopocTHast MOZEINb ObLIa UCIIONIB30BaHA ISt 00pabOTKH CEHCMUUECKHX TaHHBIX. Pe3ynsTars 00-
PabOTKM MOKA3BIBAOT, YTO JIAHHASI MOJIEITb MTO3BOJISET YIYUIIHTh CEHCMUYIECKOe MUTPAlMOHHOE H300pakeHNUE.
IIpoBenéHHBIC NCCIIETOBAHUS JEMOHCTPUPYIOT, YTO METOJ I'€0CTaTHCTUYECKOH HHBEPCHUH MO3BOJISIET TTOIYYUTh
BBICOKOTOYHYIO CKOPOCTHYIO MOJIEJb IS TPOrHO3a IJIACTOBOTO JaBJICHHS U 00paOOTKH M HHTEPIIPETALNY JIaH-
HBIX CEHCMHKH, a TAKXKE 33/1aBaTh HANPABICHUE Pa3Be/IKe U pa3paboTke HedTH.

Maemamuueckue nopoosi 6016UIOU MOWHOCIU, 2€0CMAMUCTIUYECKAsl UHBEPCUS, TUMOLO2UHECKOe PAC-
npeoenenue, CKOpoCmHoe MOOETUPOBAHIUe
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In the northern Tarim Basin, a large number of thick igneous rocks are encountered in the drilling process
in the Permian. Their lithology and velocity are very strongly, which has a great influence on migration imaging
of the “beaded” areas. It is very important to conduct the fine lithology identification and high-precision velocity
modeling of the igneous rocks for the exploration and development of the reservoirs. A geostatistical inversion
method to obtain the igneous-rock lithologic distribution pattern and velocity modeling in the FY area of the
northern Tarim Basin is introduced in this paper. The results show that the application of the geostatistical in-
version method greatly improves the resolution of lithology identification. This helps us further understand the
Permian igneous rocks distribution in the FY area. Comparison between the seismic facies classification maps
of the FY study area shows that the obtained velocity model can reflect the lateral distribution of igneous rocks
well. At the same time, the velocity model can reflect the variation of igneous rocks velocity in detail and has a
high precision. The average velocity error of the wells participating in the inversion is less than 2%, and the min-
imum average velocity error is 0.23%. Finally, the velocity model is applied to seismic data processing, and the
processing results indicate that it can help to improve seismic migration imaging. The study demonstrates that
the geostatistical inversion method can provide a high-precision velocity model for formation pressure predic-
tion and seismic data processing and interpretation, ultimately guiding the exploration and development of oil.
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INTRODUCTION

In the northern Tarim Basin, there are widely distributed igneous rocks. The lithology of igneous rocks
changes abruptly in both the vertical and horizontal directions. The velocity of different igneous rocks varies
greatly, and the high-precision velocity model is one of the cores of prestack depth migration. The unclear un-
derstanding of igneous lithology and velocity has a great influence on the exploration and development of oil.
A lot of works have been carried out to solve the difficult problems of rock lithology identification and velocity
modeling. The BP neural network is utilized to identify igneous rock with poor reflection energy and poor
continuity, which can provide a more reliable basis for the deployment of new wells (Zhang et al., 2003). Seis-
mic attributes, rock physical characteristics, seismic inversion, and seismic forward modeling are combined
with the characteristics of igneous rock in the Tazhong area, and a better understanding of the igneous rock in
the study area is obtained (Luo, 2006). To obtain the velocity characteristics of igneous rocks accurately,
probabilistic neural network inversion and seismic multiattribute analysis are used to establish the velocity field
of Tabei in Xinjiang, which is in conformity with the geologic characteristics (Xie et al., 2015). A contrastive
study of the method determining the lithology and velocity of Permian igneous rocks, such as constrained
sparse-spike inversion, artificial neural network inversion, and logging multiparameter inversion, is carried out.
The results show that the fast modeling based on constrained sparse-pulse inversion is more suitable for veloc-
ity modeling (Cui et al., 2016). Ambient noise tomography is utilized to study the velocity structure of the basalt
and subbasalt, and a more structurally complex and laterally heterogeneous crust is obtained (Sammarco et al.,
2017). Seismic interpretation, artificial neural networks, and model-based inversion are adopted to study the
seismic response of the igneous intrusions and lava flows (Naviset et al., 2017).

In the above works, conventional methods of wave impedance inversion and velocity modeling are used
to study igneous rock. The common problem is that the vertical resolution is not enough to distinguish the thin
interbed, which will result in inaccurate lithology and velocity prediction. The complex lithology of igneous
rock with great thickness and velocity variation in the FY area can be broadly divided into three types: dacite,
basalt, and pyroclastic rocks. The seismic reflection characteristics of the dacite are as follows: The reflection
energy is weak; the continuity of the seismic event is poor; and the amplitude varies greatly. Basalt has stronger
reflection energy but a small thickness. The pyroclastic rocks are thick, and their lithology is complex. All those
characteristics make it difficult to use conventional seismic inversion methods to finely identify the complex
lithology of the igneous rock in the FY area. Geostatistical inversion combines deterministic inversion with
stochastic simulation can finely depict the thin interbed and improve the resolution of the lithologic inversion
result (Yu and He, 2013; Shen et al., 2016; Zhang et al., 2016). A method based on geostatistical inversion of
igneous rock is introduced to understand the lithology and velocity distribution pattern of the thick igneous
rocks in the FY area more accurately and to obtain the high-precision velocity data on the Permian igneous
rocks with a view to guiding the work of oil exploration and development.

METHODOLOGY
Geostatistical inversion method

The geostatistical inversion method combines the stochastic simulation with the seismic inversion, which
is actually a process of optimizing the multiple simulation results on the basis of stochastic simulation and the
understanding of geological data in the work area (Wang and Wang, 2013; Tamaki et al., 2016; Bellatreche et
al., 2017; Pereira et al., 2017; Sabeti et al., 2017). The Bayes discriminant theory and the Markov chain Monte
Carlo sampling algorithm are the two cores of geostatistical inversion. The Bayes discriminant theory can com-
bine with seismic, logging, and geological prior information, so that the posterior probability density function
of a lithologic body is obtained. The Bayes formula is expressed as:

pPXH)p(E|X)
P(E|X)

p(X|H,E)= , (M

where p(X|H, E) is the posterior probability density function; p(X|H) is the prior distribution of parameter X
under the condition of hypothesis H; p(£]X) is a likelihood function observed under known X conditions;
P(E|H) is the regular factor.

However, one lithology or lithofacies often corresponds to multiple attribute parameters. In practice, it is
difficult to solve the posterior probability density distribution function, while the Markov chain Monte Carlo
sampling algorithm provides a solution. The basic idea of the algorithm can be summarized as follows:

(1) Constructing a Markov chain and converging it to a stationary distribution z(X);
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(2) Generating a sample: Starting from point X in a certain space @, n is the total number of generated
samples, sampling with the Markov chain in (1) and generating a point sequence: X, x®, ..., x(;

(3) Monte Carlo integration. m is the number of samples when the chain is smooth; the expection estima-
tion of any function f(X) is

EI=—1- Y 7). )

t=m+1

Establishment of lithology curve

Sensitive parameter analysis of different lithologies of igneous rocks is a prerequisite for geostatistical
inversion. Through sensitivity analysis, the parameters which are sensitive to lithology of igneous rocks are
found, such as wave impedance, natural gamma, etc. They are used for classification of lithology, analysis of
geostatistical parameters, and subsequent geostatis-
tical inversion. With regard to geological data, the
Permian igneous rocks in the study area are divided

Table 1. Lithologic logging response characteristics of
igneous rocks in the FY area of the northern Tarim Basin

into three categories by lithology: dacite, basalt, Igneous lithology |Natural gamma value |P-impedance value
and pyroclastic rock. Sensitivity analysis shows (GAPD) (kg/m m/s)

that the natural gamma curve is sensitive to igne-  pagite 100-190 >1.17e + 07

ous rocks, angi vyave.imp.edance is an important pa-  gasalt 30-60 ~117e+07
rameter to distinguish igneous rocks..Therefore, Pyroclastic rocks |50-190 66 + 06~1.17¢ + 07
these two curves are selected as the sensitive curves

of igneous rocks in the study area, and the logging
responses of different lithologies are analyzed as shown in Table 1. The lithologic curves in the FY area can be
calculated using Table 1, which lays the foundation for geostatistical parameter analysis and inversion.

Constrained sparse-spike inversion

Constrained sparse-spike inversion (CSSI) is a recursive inversion method based on the convolution
model, which takes seismic data into account and transforms the seismic reflection information into wave im-
pedance information, so that the rule of spatial distribution of the physical parameters of the formation is ob-
tained (Xu et al., 2010; Yang et al., 2011). The CSSI method that identifies the igneous lithology and estab-
lishes the igneous velocity model can help to rapidly obtain lithologic information on the Permian igneous rocks
in the FY area, and it can reflect the spatial distribution of physical parameters of igneous rocks on the whole.

Figure 1 shows the results of inversion of the Permian igneous rocks in the FY area, which elementarily
reflects the law of development of igneous rocks in the longitudinal direction. The igneous-rock lithology in the

P-imp3edance
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Fig. 1. Constrained sparse-spike inversion section of the FY201, FY203, and FY204 wells.
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upper Permian is dominated by dacite and basalt, both with a high impedance value, and the underlying igneous
rocks are pyroclastic rocks with a low wave impedance value. The inversion result is consistent with the law of
geologic recognition, and there is a relatively continuous pyroclastic interlayer between dacite and basalt, which
updates the law of distribution of Permian igneous rocks in the FY area. However, owing to the limitation of
vertical resolution, more details cannot be reflected, and geologic inversion is utilized to further improve the
vertical resolution of the inversion results. CSSI is an important part of geostatistical inversion. Well seismic
calibration, time—depth transformation, fine geologic model establishment, and seismic wavelet extraction will
be used into geostatistical inversion, and the absolute impedance of the deterministic inversion is used to obtain
the horizontal variation function.

Optimization of geostatistical parameters

The geostatistical parameters mainly include the probability density function (PDF) and variation func-
tion. The probability density function describes the possibility of a distribution of elastic parameters corre-
sponding to a particular rock facies. The types of the probability density function include the Gauss-type func-
tion, equal distribution function, uniform distribution function, and logarithmic Gauss-type function. The data
show that the Gauss function can reflect the distribution of data sample points better, as shown in Fig. 2. There-
fore, the Gauss function is used to analyze the logging impedance data on igneous rocks of different lithologies
in the FY research area. Figure 2 shows the wave impedance frequency distribution histogram and the Gaussian
transformation curve of the pyroclastic rocks in the TT2 layer with an average value of 9.24 x 10% and a stan-
dard deviation of 8.62 x 105.

The variation function describes the transverse and longitudinal structure and scale of the geologic fea-
tures, which means the size of different lithofacies and its attributes in the spatial distribution pattern and the
change scale. It is used to describe the spatial correlation of different lithofacies data. The variation function is
defined as:

1 N(h)

r(h) = W 21 [z(u,)—z(u, + D)) , 3)

where £ is the lag distance, and r is the variation function value; N(h) is the number of distance h, and z(u,) is a
regional variable.

The variable range is an important parameter of the variation function, representing the maximum cor-
relation distance in space (Goovaerts, 1994; Guo et al., 2015; Zhang et al., 2017). The larger the range, the
larger the correlation scale indicating the spatial distribution of the regional variables, the slower and the less
random the change rate. Since the logging data have a high longitudinal resolution, the sample of logging data
is used to calculate the vertical variation function, and the horizontal variation function is calculated from the
seismic inversion body with higher lateral resolution. The scientific and accurate variation function can make
the geostatistical inversion accurately reflect the spatial distribution characteristics of igneous rocks in the FY
area. Figure 3 shows the vertical variation function curve of the wave impedance of pyroclastic rocks of the
Permian TT2 layer in the FY area. It can be seen that the variable range is small, which indicates that the pyro-
clastic rocks are thin and their lithology changes rapidly.

Signal-to-noise ratio and quality control

After analysis of the probability density function and variation function, the random simulation and geo-
statistical inversion can be carried out. However, in the inversion, it is necessary to determine the weight of the
seismic data, that is, the signal-to-noise ratio (SNR),

the range of which should be between 1 and 30 dB. N
The higher the SNR, the smaller the residual. Figure 0.08 1
4 shows the SNR histogram of the CSSI results of |
the Permian igneous rock in the FY area. Most of g 0.06
the SNR are centered between 10 and 25 dB, which & |
also reflects that the CSSI results of the Permian ig- £
neous rock in the FY area match well with the true § 0041
8 0021
Fig. 2. P-impedance Gaussian transformation 0
of pyroclastic rocks of the TT2 layer in the FY 70106 9106 | 1de+07 136407
work area. P-impedance, kg/m3 - m/s
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In the process of geostatistical simulation and
inversion, quality control is required to check the Fjg, 4. SNR histogram of the CSSI results for the

correctness of the inversion results (Dong et al., permian igneous rocks in the FY area.
2013). In the process of geostatistical simulation,

the quality control content is mainly to observe the

simulated profile and the CSSI profile. The distribution, scale, lithology ratio, and connectivity of the rock ob-
tained by the two methods should be basically identical without overemphasizing the details in the process of
geostatistical inversion, in addition to comparing the consistency between the geostatistical inversion profile
and the CSSI profile. There is also a test method, the well extracting test, which can be performed in two ways
to check the result of inversion. One is to observe whether the inversion body around the well is consistent with
the well lithologic curve in the inversion profile. The other is to compare the extracted geostatistical inversion
wave impedance curve of the well point with the original wave impedance curve of the well.

CASE STUDY
General geology and characteristics of igneous rocks of the work area

The FY study area is located on the southwestern slope of the Lunnan low uplift, North Tarim uplift. The
area is near the Luntai uplift in the north, the Northern depression in the south, the Yingmaili low uplift in the
west, and the Lunnan low uplift in the east. The total area of the full fold of the FY region is 588.2 km?2. Drilling
revealed thick igneous rock with a thickness of 500—700 m and abruptly varying lithology and velocity in both
the lateral and vertical directions. There are ten wells in the FY area, and all of them are drilled into thick igne-
ous rocks. According to the types of rock structure, the rocks are divided into two major categories: volcanic
lava and pyroclastic rocks. Volcanic lava is dominated by dacite and basalt, while pyroclastic rocks are domi-
nated by tuff and tuffaceous sandstone and mudstone. According to the chemical type and mineral composition,
the igneous rocks are divided into three categories: basic, intermediate, and acidic, but the distribution of inter-
mediate andesite is limited. The basic basalt and acidic dacite are mainly dominant. Figure 5 is a synthesis
column map of the FY201 wells in the FY area. In the figure, the GR and acoustic logging responses corre-
sponding to typical seismic sections and cuttings microsection of different igneous rocks are displayed.

The two logging curves in the igneous rock segment are more stable after entering the Permian, and they
have a sudden change in the lower igneous rock segment. It shows that the acoustic logging curve is changed
from low to high and then low, and the natural gamma value is changed from high to low. Then the two curves
remain stable, and the mutation occurs again in the pyroclastic rocks segment. According to the responses, the
Permian in the FY area can be divided into three sections: upper, middle, and lower. In the upper section, the
GR values are high, and the lithology is dominated by acidic rocks. In the middle section, the GR values are
low, about 30—50 API, and the lithology is dominated by basic rocks. The logging curves of the lower section
vary greatly, while the lithology of igneous rocks varies greatly. By taking cuttings and identifying a cuttings
microsection under a microscope, it is found that the crystal fragments of acidic dacite at 4550 m are plagio-
clase, quartz, and oxidized amphibole. The basic basalt is found at 4610 m with an intersertal and implicit
structure. The matrix is microcrystalline plagioclase, pyroxene, magnetite, and crystalline. In addition, there is
tuffaceous fine sandstone with calcite found in the crumbs at 4750 m.

Integrating logging and seismic data and analysis of the cuttings microsection, we obtained the general
lithology distribution pattern of Permian igneous rocks in the FY area. The lithology of igneous rocks in the
upper Permian is dominated by dacite, and the middle part is dominated by basalt, while the lower part is com-
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posed of pyroclastic rocks dominated by tuff and tuffaceous sandstone and mudstone. However, the thickness
of igneous rocks with complex lithology in the FY area is large. If there are other lithologies in each igneous

rock segment, fine lithologic inversion is needed to identify them.

Analysis of the effect of geostatistical lithologic inversion

Through the geostatistical inversion of the Permian igneous rocks in the FY study area, ten types of igne-
ous probabilities are obtained by ten sorts of realizations, owing to the large work area and the large amount of
calculation. Figure 6 shows the geostatistical inversion section of the FY201, FY203, and FY204 wells. Com-
pared with Fig. 1, the rock shape and the scale of distribution of the two wave impedance profiles are roughly
the same. Moreover, the wave impedance around the wells in the geologic inversion section of igneous rocks

Fig. 5. Comprehensive strata log diagram of the FY201 well.

) DT24 . GR Seismic reflection Cuttings
Period 40 - 160 Depth Lithology 20 - 200 characteristics microsection
Triassic ;
‘i
?
: v "
P
v 28l
¥y Y
vy ¥
Permian
4750 m
Tuffaceous
fine
sandstone
Carboniferous

981



matches with the well logging data obtained by wave impedance. This verifies that the geostatistical inversion
can correctly reflect the lithologic and physical distribution characteristics of igneous rocks of the FY area.

In the lithologic resolution, the constrained sparse-spike inversion in Fig. 1 roughly depicts the changes
in lithology, and details are not rich enough. In Fig. 6, some of the thin layers of low-velocity lithologic bodies
are identified in the upper part of the Permian, and in the pyroclastic rocks formation, the lower part of the
Permian, several sets of high-velocity igneous rocks are identified. The longitudinal resolution is greatly im-
proved.

The FY1 wells revealed two sets of basic basalts, which are easy to distinguish, owing to their lower
natural gamma value between 30 and 50 GAPI. The continuity of the phase axis is good. Figure 7 is the iden-
tification of the cross section of the FY1 well of basalt to compare the detail recognition ability of constrained
sparse-pulse inversion and geostatistical inversion. The basalt contour identified by geostatistical inversion is
clearer and more natural. In summary, the geostatistical inversion identifies the igneous rocks with high accu-
racy and resolution, and the effect is good.

Lithologic distribution analysis of Permian igneous rocks in the FY area

Ten kinds of igneous rock lithology probabilities were acquired by geostatistical inversion, and the prob-
ability bodies of the three lithologies were obtained: a dacite probability body, a basalt probability body, and a
pyroclastic rock probability body. Figure 8 shows the three lithologies probability profiles of the FY201, FY203,
FY204, and FY202 wells, and the color in the profiles is the probability value of a certain lithology. From
Fig. 8a, it can be known that the dacites are mainly located in the upper part of the Permian, where several sets
of relatively continuous “other lithologic bodies™ are also located. At the same time, the probability of the dacite
in the lower part of the Permian is below 10%. Figure 8b, shows the basalt probability profile. The temperature
of the basaltic magma is high, usually above 1100 °C. The viscosity is low, and the bursting ability is weak.
Therefore, based on the seismic and geological data, the relatively continuous high-probability strata in the up-
per parts of Fig. 8b, can be predicted as basalt. In contrast, the upper and lower intermittent high-probability
rock bodies are considered false information, not basalt. It can be seen from Fig. 8c, that the stratum lithology
under the basalt in the Permian is dominated by pyroclastic rocks, and there are three to four sets of pyroclastic
rocks in the upper Permian. It can be concluded that the “other lithologic body” in Fig. 8a, is composed of pyro-
clastic rocks.

Comprehensive Figs. 6 and 8 and the lithologic distribution in the general geology, the lithologic distri-
bution pattern of igneous rocks in the Halahatang FY area in the Permian can be further updated. The main lithol-
ogy of the upper Permian is dacite, of which there are three to four sets of pyroclastic rocks. There is a rela-
tively continuous pyroclastic rocks interlayer between dacite and basalt, and the stratum lithology under the
basalt is dominated by pyroclastic rocks.
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Fig. 6. The geostatistical inversion section of the FY201, FY203, and FY204 wells.
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Analysis of the effect of velocity modeling in geostatistical inversion

The high-resolution igneous-rock impedance obtained by geostatistical inversion is transformed into ig-
neous-rock velocity using the empirical transformation formula, which is obtained by fitting the velocity and
density data in the region. It can better reflect the characteristics of the igneous rocks. After the transformation,
the lithology resolution of igneous rocks is kept unchanged. Thus, the high-precision velocity model of the Perm-
ian igneous rocks, based on geostatistical inversion in the FY area, is obtained. To reflect the accuracy of the
velocity model and the ability to distinguish the igneous rock, the pseudo-velocity curves of the FY201, FY203,
and FY204 wells are extracted. At the same time, we extract the pseudo-velocity curve of the CSSI velocity and
compare it with the original velocity curve to analyze the effect of velocity modeling. The comparison of the
three velocity curves is shown in Fig. 9. The cyan curve is the original velocity obtained by the well logging;
the blue curve is the pseudo-well velocity extracted by the CSSI velocity model; the red curve is the pseudo-
well velocity extracted by the high-precision velocity body obtained by the geostatistical inversion.

It can be seen from Fig. 9 that the velocity curve obtained by CSSI is relatively smooth and can reflect
the velocity trend in the longitudinal direction of the igneous rocks, but the velocity detail information is not
enough. The velocity curve obtained by geostatistical inversion is in good agreement with the original velocity
curve of the wells and has high lithological resolution ability. The details of the velocity variation are also rich,
which can reflect the velocity information on the underground strata more realistically.

To quantitatively analyze the precision of inversion velocity, the CSSI velocity and geostatistical inver-
sion velocity of YM4, FY102, FY104, FY201, FY203, FY204, and other well points are extracted, and the
YM4 well is the verification well, which is not involved in the inversion. The average velocity of the Permian
in each well is obtained and compared with the original average velocity of each well. Then the velocity error
under two inversion methods is calculated (Table 2). The velocity model obtained by the geostatistical inver-
sion is maintained at a good lithologic resolution, and the velocity accuracy is high. The error is controlled
within 2%. Therefore, compared with the commonly used velocity modeling method, geostatistical inversion
velocity modeling has a high precision and a superior lithologic resolution.

After comparing the numerical accuracy, the high-precision igneous-rock velocity model based on geo-
statistical inversion and the conventional strata-bound velocity model are applied to the seismic data process-

Table 2. Comparison of velocity errors between two inversion methods

Inversion velocity analysis YM4 FY102 FY104 FY201 FY203 FY204 Mean

Original velocity from | Value, m/s  |4368.6 43763 |4359.7 43597 43199 43054  |43483

well

Velocity from CSSI Value, m/s  |4342.7 43709 |4304.2 4304.1 43146 |42834  |43199
Error ~0.59% L0.12%  |-127%  |1.04% S0.12%  |-0.51%  |-0.26%

Velocity from geostatisti- |Value, m/s  |4401.6 43862 42853 4344.1 43426 42901  |43417

cal inversion Error 0.75% 0.23% 171%  |1.98% 0.53% ~036%  |0.23%
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Fig. 8. The three lithologies probability profiles of the FY201, FY203, FY204, and FY202 wells. a, Dacite
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ing. Figure 10 shows the comparison of the migration results. Figure 10a, shows the offset profile obtained
using the conventional strata-bound velocity model to process the seismic data, and Fig. 105, shows the offset
profile obtained using the high-precision velocity model in this study. If we compare the two profiles, the inter-
nal description of igneous rocks is clearer in the profile of Fig. 105. The signal-to-noise ratio is improved, and
the continuity is enhanced. Therefore, in addition to reservoir prediction, geostatistical inversion can be used as
an effective method to establish the fine velocity model of igneous-rock or other lithology and can provide a
high-precision velocity model for seismic data processing.

Fig. 10. Comparison of offset imaging using different velocity models. a, The conventional strata-bound
velocity model; b, geostatistical inversion velocity model.
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CONCLUSIONS

In this study, a geostatistical inversion method is applied to lithology identification and velocity modeling
of the Permian thick igneous rock in the FY area of the northern Tarim Basin. The following conclusions are
made:

CSSI takes into account seismic data and can roughly reflect the distribution characteristics of lithology.
On this basis, the geostatistical inversion is used to identify the igneous-rock lithology, which depicts the shape
and contour of the igneous rocks more clearly. By analyzing the wave impedance and the probability body of
different igneous-rock lithologies, a more accurate distribution pattern of Permian igneous rocks in the FY area
is obtained. That is, the lithology of igneous rocks in the upper Permian is dominated by dacite, of which there
are three to four sets of pyroclastic rocks. The main igneous rock in the middle Permian is basalt. The igneous
rocks in the lower Permian are pyroclastic rocks with complex lithology which is dominated by tuff and tuffa-
ceous sandstone and mudstone. In addition, there is a relatively continuous pyroclastic rock interlayer between
dacite and basalt;

The velocity model obtained by geostatistical inversion can reflect the details of the velocity variation of
the Permian igneous rock. The drilling results have verified the high accuracy of the geostatistical inversion
velocity modeling. The velocity error of the well point is controlled within 2%, and the average error is 0.23%.
It can provide a high-precision igneous-rock velocity model for formation pressure prediction and seismic data
processing. It also provides a reliable basis for variable velocity mapping and trap ascertainment and ultimately
guides the work of oil exploration and development;

Lithological information obtained by geostatistical inversion is rich, and the resolution is high. However,
the calculation of inversion is large, and the statistical work is more complex. In addition, the inversion work is
more suitable for areas that have more drilling wells. In contrast, other modeling methods, such as CSSI and
tomographic inversion, are more suitable for large-scale and fast-velocity modeling.

This work was supported by the project funded by the Priority Academic Program Development of Ji-
angsu Higher Education Institutions, the China Postdoctoral Science Foundation (grants No. 2014M551703 and
2018M630631), and the Fundamental Research Funds for the Central Universities (grants No. 2012QNA62 and
Isujbky-2019-54).
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