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В северной части Таримского бассейна при бурении пермских отложений выявлено большое ко-
личество мощных магматических тел. Их литология и скорости сейсмических волн в них резко изменя-
ются, что оказывает значительное влияние на миграционное изображение «бусиновидных» отражений. 
Для разведки и разработки коллекторов очень важно проводить детальное литологическое определе-
ние и высокоточное скоростное моделирование магматических пород. В настоящей статье приводится 
метод геостатистической инверсии для определения закономерностей литологического распределения 
магматических пород и скоростного моделирования в области Фуюань северной части Таримского бас-
сейна. Результаты показывают, что применение метода геостатистической инверсии значительно повы-
шает разрешение литологических определений, что помогает лучше понять распределение пермских 
магматических пород в области Фуюань. Сравнение классификационных карт сейсмических фаций об-
ласти исследования показывает, что полученная скоростная модель хорошо отражает латеральное рас-
пределение магматических пород. Также данная модель подробно и с большой точностью определяет 
изменения скоростей в магматических породах. Средняя ошибка определения скорости в скважинах, 
используемых в инверсии, составляет менее 2 %, а минимальная средняя ошибка скорости — 0.23 %. 
Полученная скоростная модель была использована для обработки сейсмических данных. Результаты об-
работки показывают, что данная модель позволяет улучшить сейсмическое миграционное изображение. 
Проведённые исследования демонстрируют, что метод геостатистической инверсии позволяет получить 
высокоточную скоростную модель для прогноза пластового давления и обработки и интерпретации дан-
ных сейсмики, а также задавать направление разведке и разработке нефти.

Магматические породы большой мощности, геостатистическая инверсия, литологическое рас-
пределение, скоростное моделирование
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In the northern Tarim Basin, a large number of thick igneous rocks are encountered in the drilling process 

in the Permian. Their lithology and velocity are very strongly, which has a great influence on migration imaging 
of the “beaded” areas. It is very important to conduct the fine lithology identification and high-precision velocity 
modeling of the igneous rocks for the exploration and development of the reservoirs. A geostatistical inversion 
method to obtain the igneous-rock lithologic distribution pattern and velocity modeling in the FY area of the 
northern Tarim Basin is introduced in this paper. The results show that the application of the geostatistical in-
version method greatly improves the resolution of lithology identification. This helps us further understand the 
Permian igneous rocks distribution in the FY area. Comparison between the seismic facies classification maps 
of the FY study area shows that the obtained velocity model can reflect the lateral distribution of igneous rocks 
well. At the same time, the velocity model can reflect the variation of igneous  rocks velocity in detail and has a 
high precision. The average velocity error of the wells participating in the inversion is less than 2%, and the min-
imum average velocity error is 0.23%. Finally, the velocity model is applied to seismic data processing, and the 
processing results indicate that it can help to improve seismic migration imaging. The study demonstrates that 
the geostatistical inversion method can provide a high-precision velocity model for formation pressure predic-
tion and seismic data processing and interpretation, ultimately guiding the exploration and development of oil.

Thick igneous rocks; geostatistical inversion; lithology distribution; velocity modeling
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INTRODUCTION

In the northern Tarim Basin, there are widely distributed igneous rocks. The lithology of igneous rocks 
changes abruptly in both the vertical and horizontal directions. The velocity of different igneous rocks varies 
greatly, and the high-precision velocity model is one of the cores of prestack depth migration. The unclear un-
derstanding of igneous lithology and velocity has a great influence on the exploration and development of oil. 
A lot of works have been carried out to solve the difficult problems of rock lithology identification and velocity 
modeling. The BP neural network is utilized to identify igneous rock with poor reflection energy and poor 
continuity, which can provide a more reliable basis for the deployment of new wells (Zhang et al., 2003). Seis-
mic attributes, rock physical characteristics, seismic inversion, and seismic forward modeling are combined 
with the characteristics of igneous rock in the Tazhong area, and a better understanding of the igneous rock in 
the study area is obtained (Luo, 2006). To obtain the velocity characteristics of igneous rocks accurately, 
probabilistic neural network inversion and seismic multiattribute analysis are used to establish the velocity field 
of Tabei in Xinjiang, which is in conformity with the geologic characteristics (Xie et al., 2015). A contrastive 
study of the method determining the lithology and velocity of Permian igneous rocks, such as constrained 
sparse-spike inversion, artificial neural network inversion, and logging multiparameter inversion, is carried out. 
The results show that the fast modeling based on constrained sparse-pulse inversion is more suitable for veloc-
ity modeling (Cui et al., 2016). Ambient noise tomography is utilized to study the velocity structure of the basalt 
and subbasalt, and a more structurally complex and laterally heterogeneous crust is obtained (Sammarco et al., 
2017). Seismic interpretation, artificial neural networks, and model-based inversion are adopted to study the 
seismic response of the igneous intrusions and lava flows (Naviset et al., 2017).

In the above works, conventional methods of wave impedance inversion and velocity modeling are used 
to study igneous rock. The common problem is that the vertical resolution is not enough to distinguish the thin 
interbed, which will result in inaccurate lithology and velocity prediction. The complex lithology of igneous 
rock with great thickness and velocity variation in the FY area can be broadly divided into three types: dacite, 
basalt, and pyroclastic rocks. The seismic reflection characteristics of the dacite are as follows: The reflection 
energy is weak; the continuity of the seismic event is poor; and the amplitude varies greatly. Basalt has stronger 
reflection energy but a small thickness. The pyroclastic rocks are thick, and their lithology is complex. All those 
characteristics make it difficult to use conventional seismic inversion methods to finely identify the complex 
lithology of the igneous rock in the FY area. Geostatistical inversion combines deterministic inversion with 
stochastic simulation can finely depict the thin interbed and improve the resolution of the lithologic inversion 
result (Yu and He, 2013; Shen et al., 2016; Zhang et al., 2016). A method based on geostatistical inversion of 
igneous rock is introduced to understand the lithology and velocity distribution pattern of the thick igneous 
rocks in the FY area more accurately and to obtain the high-precision velocity data on the Permian igneous 
rocks with a view to guiding the work of oil exploration and development.

METHODOLOGY

Geostatistical inversion method

The geostatistical inversion method combines the stochastic simulation with the seismic inversion, which 
is actually a process of optimizing the multiple simulation results on the basis of stochastic simulation and the 
understanding of geological data in the work area (Wang and Wang, 2013; Tamaki et al., 2016; Bellatreche et 
al., 2017; Pereira et al., 2017; Sabeti et al., 2017). The Bayes discriminant theory and the Markov chain Monte 
Carlo sampling algorithm are the two cores of geostatistical inversion. The Bayes discriminant theory can com-
bine with seismic, logging, and geological prior information, so that the posterior probability density function 
of a lithologic body is obtained. The Bayes formula is expressed as:

	 ( | ) ( | )( | , )
( | )

p X H p E Xp X H E
P E X

= ,	 (1)

where p(X  |H, E) is the posterior probability density function; p(X |H) is the prior distribution of parameter X 
under the condition of hypothesis H; p(E |X) is a likelihood function observed under known X conditions; 
P(E |H) is the regular factor.

However, one lithology or lithofacies often corresponds to multiple attribute parameters. In practice, it is 
difficult to solve the posterior probability density distribution function, while the Markov chain Monte Carlo 
sampling algorithm provides a solution. The basic idea of the algorithm can be summarized as follows:

(1) Constructing a Markov chain and converging it to a stationary distribution π(x);
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(2) Generating a sample: Starting from point x(0) in a certain space Ф, n is the total number of generated 
samples, sampling with the Markov chain in (1) and generating a point sequence: x(1), x(2), ..., x(n);

(3) Monte Carlo integration. m is the number of samples when the chain is smooth; the expection estima-
tion of any function f (x) is
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Establishment of lithology curve
Sensitive parameter analysis of different lithologies of igneous rocks is a prerequisite for geostatistical 

inversion. Through sensitivity analysis, the parameters which are sensitive to lithology of igneous rocks are 
found, such as wave impedance, natural gamma, etc. They are used for classification of lithology, analysis of 
geostatistical parameters, and subsequent geostatis-
tical inversion. With regard to geological data, the 
Permian igneous rocks in the study area are divided 
into three categories by lithology: dacite, basalt, 
and pyroclastic rock. Sensitivity analysis shows 
that the natural gamma curve is sensitive to igne-
ous rocks, and wave impedance is an important pa-
rameter to distinguish igneous rocks. Therefore, 
these two curves are selected as the sensitive curves 
of igneous rocks in the study area, and the logging 
responses of different lithologies are analyzed as shown in Table 1. The lithologic curves in the FY area can be 
calculated using Table 1, which lays the foundation for geostatistical parameter analysis and inversion.

Constrained sparse-spike inversion
Constrained sparse-spike inversion (CSSI) is a recursive inversion method based on the convolution 

model, which takes seismic data into account and transforms the seismic reflection information into wave im-
pedance information, so that the rule of spatial distribution of the physical parameters of the formation is ob-
tained (Xu et al., 2010; Yang et al., 2011). The CSSI method that identifies the igneous lithology and estab-
lishes the igneous velocity model can help to rapidly obtain lithologic information on the Permian igneous rocks 
in the FY area, and it can reflect the spatial distribution of physical parameters of igneous rocks on the whole.

Figure 1 shows the results of inversion of the Permian igneous rocks in the FY area, which elementarily 
reflects the law of development of igneous rocks in the longitudinal direction. The igneous-rock lithology in the 

T a b l e  1 .  Lithologic logging response characteristics of 
igneous rocks in the FY area of the northern Tarim Basin
Igneous lithology Natural gamma value  

(GAPI)
P-impedance value 
(kg/m3·m/s)

Dacite 100–190 >1.17e + 07
Basalt 30–60 >1.17e + 07
Pyroclastic rocks 50–190 6e + 06~1.17e + 07

Fig. 1. Constrained sparse-spike inversion section of the FY201, FY203, and FY204 wells.
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upper Permian is dominated by dacite and basalt, both with a high impedance value, and the underlying igneous 
rocks are pyroclastic rocks with a low wave impedance value. The inversion result is consistent with the law of 
geologic recognition, and there is a relatively continuous pyroclastic interlayer between dacite and basalt, which 
updates the law of distribution of Permian igneous rocks in the FY area. However, owing to the limitation of 
vertical resolution, more details cannot be reflected, and geologic inversion is utilized to further improve the 
vertical resolution of the inversion results. CSSI is an important part of geostatistical inversion. Well seismic 
calibration, time–depth transformation, fine geologic model establishment, and seismic wavelet extraction will 
be used into geostatistical inversion, and the absolute impedance of the deterministic inversion is used to obtain 
the horizontal variation function.

Optimization of geostatistical parameters
The geostatistical parameters mainly include the probability density function (PDF) and variation func-

tion. The probability density function describes the possibility of a distribution of elastic parameters corre-
sponding to a particular rock facies. The types of the probability density function include the Gauss-type func-
tion, equal distribution function, uniform distribution function, and logarithmic Gauss-type function. The data 
show that the Gauss function can reflect the distribution of data sample points better, as shown in Fig. 2. There-
fore, the Gauss function is used to analyze the logging impedance data on igneous rocks of different lithologies 
in the FY research area. Figure 2 shows the wave impedance frequency distribution histogram and the Gaussian 
transformation curve of the pyroclastic rocks in the TT2 layer with an average value of 9.24 × 106 and a stan-
dard deviation of 8.62 × 105.

The variation function describes the transverse and longitudinal structure and scale of the geologic fea-
tures, which means the size of different lithofacies and its attributes in the spatial distribution pattern and the 
change scale. It is used to describe the spatial correlation of different lithofacies data. The variation function is 
defined as: 

	
( )

2

1

1( ) [ ( ) ( )]
2 ( )

N h

i i
i

r h z u z u h
N h =

= − +∑ , 	 (3)

where h is the lag distance, and r is the variation function value; N(h) is the number of distance h, and z(ui) is a 
regional variable.

The variable range is an important parameter of the variation function, representing the maximum cor-
relation distance in space (Goovaerts, 1994; Guo et al., 2015; Zhang et al., 2017). The larger the range, the 
larger the correlation scale indicating the spatial distribution of the regional variables, the slower and the less 
random the change rate. Since the logging data have a high longitudinal resolution, the sample of logging data 
is used to calculate the vertical variation function, and the horizontal variation function is calculated from the 
seismic inversion body with higher lateral resolution. The scientific and accurate variation function can make 
the geostatistical inversion accurately reflect the spatial distribution characteristics of igneous rocks in the FY 
area. Figure 3 shows the vertical variation function curve of the wave impedance of pyroclastic rocks of the 
Permian TT2 layer in the FY area. It can be seen that the variable range is small, which indicates that the pyro-
clastic rocks are thin and their lithology changes rapidly.

Signal-to-noise ratio and quality control
After analysis of the probability density function and variation function, the random simulation and geo-

statistical inversion can be carried out. However, in the inversion, it is necessary to determine the weight of the 
seismic data, that is, the signal-to-noise ratio (SNR), 
the range of which should be between 1 and 30 dB. 
The higher the SNR, the smaller the residual. Figure 
4 shows the SNR histogram of the CSSI results of 
the Permian igneous rock in the FY area. Most of 
the SNR are centered between 10 and 25 dB, which 
also reflects that the CSSI results of the Permian ig-
neous rock in the FY area match well with the true 

Fig. 2. P-impedance Gaussian transformation 
of pyroclastic rocks of the TT2 layer in the FY 
work area.
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seismic record. After several tests, the SNR was de-
termined to be 18 dB.

In the process of geostatistical simulation and 
inversion, quality control is required to check the 
correctness of the inversion results (Dong et al., 
2013). In the process of geostatistical simulation, 
the quality control content is mainly to observe the 
simulated profile and the CSSI profile. The distribution, scale, lithology ratio, and connectivity of the rock ob-
tained by the two methods should be basically identical without overemphasizing the details in the process of 
geostatistical inversion, in addition to comparing the consistency between the geostatistical inversion profile 
and the CSSI profile. There is also a test method, the well extracting test, which can be performed in two ways 
to check the result of inversion. One is to observe whether the inversion body around the well is consistent with 
the well lithologic curve in the inversion profile. The other is to compare the extracted geostatistical inversion 
wave impedance curve of the well point with the original wave impedance curve of the well.

CASE STUDY

General geology and characteristics of igneous rocks of the work area
The FY study area is located on the southwestern slope of the Lunnan low uplift, North Tarim uplift. The 

area is near the Luntai uplift in the north, the Northern depression in the south, the Yingmaili low uplift in the 
west, and the Lunnan low uplift in the east. The total area of the full fold of the FY region is 588.2 km2. Drilling 
revealed thick igneous rock with a thickness of 500–700 m and abruptly varying lithology and velocity in both 
the lateral and vertical directions. There are ten wells in the FY area, and all of them are drilled into thick igne-
ous rocks. According to the types of rock structure, the rocks are divided into two major categories: volcanic 
lava and pyroclastic rocks. Volcanic lava is dominated by dacite and basalt, while pyroclastic rocks are domi-
nated by tuff and tuffaceous sandstone and mudstone. According to the chemical type and mineral composition, 
the igneous rocks are divided into three categories: basic, intermediate, and acidic, but the distribution of inter-
mediate andesite is limited. The basic basalt and acidic dacite are mainly dominant. Figure 5 is a synthesis 
column map of the FY201 wells in the FY area. In the figure, the GR and acoustic logging responses corre-
sponding to typical seismic sections and cuttings microsection of different igneous rocks are displayed.

The two logging curves in the igneous rock segment are more stable after entering the Permian, and they 
have a sudden change in the lower igneous rock segment. It shows that the acoustic logging curve is changed 
from low to high and then low, and the natural gamma value is changed from high to low. Then the two curves 
remain stable, and the mutation occurs again in the pyroclastic rocks segment. According to the responses, the 
Permian in the FY area can be divided into three sections: upper, middle, and lower. In the upper section, the 
GR values are high, and the lithology is dominated by acidic rocks. In the middle section, the GR values are 
low, about 30–50 API, and the lithology is dominated by basic rocks. The logging  curves of the lower section 
vary greatly, while the lithology of igneous rocks varies greatly. By taking cuttings and identifying a cuttings 
microsection under a microscope, it is found that the crystal fragments of acidic dacite at 4550 m are plagio-
clase, quartz, and oxidized amphibole. The basic basalt is found at 4610 m with an intersertal and implicit 
structure. The matrix is microcrystalline plagioclase, pyroxene, magnetite, and crystalline. In addition, there is 
tuffaceous fine sandstone with calcite found in the crumbs at 4750 m. 

Integrating logging and seismic data and analysis of the cuttings microsection, we obtained the general 
lithology distribution pattern of Permian igneous rocks in the FY area. The lithology of igneous rocks in the 
upper Permian is dominated by dacite, and the middle part is dominated by basalt, while the lower part is com-

Fig. 3. P-impedance vertical variation function 
of pyroclastic rocks of the TT2 layer in the FY 
work area.

Fig. 4. SNR histogram of the CSSI results for the 
Permian igneous rocks in the FY area.
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posed of pyroclastic rocks dominated by tuff and tuffaceous sandstone and mudstone. However, the thickness 
of igneous rocks with complex lithology in the FY area is large. If there are other lithologies in each igneous 
rock segment, fine lithologic inversion is needed to identify them.

Analysis of the effect of geostatistical lithologic inversion
Through the geostatistical inversion of the Permian igneous rocks in the FY study area, ten types of igne-

ous probabilities are obtained by ten sorts of realizations, owing to the large work area and the large amount of 
calculation. Figure 6 shows the geostatistical inversion section of the FY201, FY203, and FY204 wells. Com-
pared with Fig. 1, the rock shape and the scale of distribution of the two wave impedance profiles are roughly 
the same. Moreover, the wave impedance around the wells in the geologic inversion section of igneous rocks 

Fig. 5. Comprehensive strata log diagram of the FY201 well.
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matches with the well logging data obtained by wave impedance. This verifies that the geostatistical inversion 
can correctly reflect the lithologic and physical distribution characteristics of igneous rocks of the FY area.

In the lithologic resolution, the constrained sparse-spike inversion in Fig. 1 roughly depicts the changes 
in lithology, and details are not rich enough. In Fig. 6, some of the thin layers of low-velocity lithologic bodies 
are identified in the upper part of the Permian, and in the pyroclastic rocks formation, the lower part of the 
Permian, several sets of high-velocity igneous rocks are identified. The longitudinal resolution is greatly im-
proved.

The FY1 wells revealed two sets of basic basalts, which are easy to distinguish, owing to their lower 
natural gamma value between 30 and 50 GAPI. The continuity of the phase axis is good. Figure 7 is the iden-
tification of the cross section of the FY1 well of basalt to compare the detail recognition ability of constrained 
sparse-pulse inversion and geostatistical inversion. The basalt contour identified by geostatistical inversion is 
clearer and more natural. In summary, the geostatistical inversion identifies the igneous rocks with high accu-
racy and resolution, and the effect is good.

Lithologic distribution analysis of Permian igneous rocks in the FY area
Ten kinds of igneous rock lithology probabilities were acquired by geostatistical inversion, and the prob-

ability bodies of the three lithologies were obtained: a dacite probability body, a basalt probability body, and a 
pyroclastic rock probability body. Figure 8 shows the three lithologies probability profiles of the FY201, FY203, 
FY204, and FY202 wells, and the color in the profiles is the probability value of a certain lithology. From 
Fig. 8a, it can be known that the dacites are mainly located in the upper part of the Permian, where several sets 
of relatively continuous “other lithologic bodies” are also located. At the same time, the probability of the dacite 
in the lower part of the Permian is below 10%. Figure 8b, shows the basalt probability profile. The temperature 
of the basaltic magma is high, usually above 1100 °C. The viscosity is low, and the bursting ability is weak. 
Therefore, based on the seismic and geological data, the relatively continuous high-probability strata in the up-
per parts of Fig. 8b, can be predicted as basalt. In contrast, the upper and lower intermittent high-probability 
rock bodies are considered false information, not basalt. It can be seen from Fig. 8c, that the stratum lithology 
under the basalt in the Permian is dominated by pyroclastic rocks, and there are three to four sets of pyroclastic 
rocks in the upper Permian. It can be concluded that the “other lithologic body” in Fig. 8a, is composed of pyro
clastic rocks.

Comprehensive Figs. 6 and 8 and the lithologic distribution in the general geology, the lithologic distri-
bution pattern of igneous rocks in the Halahatang FY area in the Permian can be further updated. The main lithol-
ogy of the upper Permian is dacite, of which there are three to four sets of pyroclastic rocks. There is a rela-
tively continuous pyroclastic rocks interlayer between dacite and basalt, and the stratum lithology under the 
basalt is dominated by pyroclastic rocks.

Fig. 6. The geostatistical inversion section of the FY201, FY203, and FY204 wells.
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Analysis of the effect of velocity modeling in geostatistical inversion

The high-resolution igneous-rock impedance obtained by geostatistical inversion is transformed into ig-
neous-rock velocity using the empirical transformation formula, which is obtained by fitting the velocity and 
density data in the region. It can better reflect the characteristics of the igneous rocks. After the transformation, 
the lithology resolution of igneous rocks is kept unchanged. Thus, the high-precision velocity model of the Perm-
ian igneous rocks, based on geostatistical inversion in the FY area, is obtained. To reflect the accuracy of the 
velocity model and the ability to distinguish the igneous rock, the pseudo-velocity curves of the FY201, FY203, 
and FY204 wells are extracted. At the same time, we extract the pseudo-velocity curve of the CSSI velocity and 
compare it with the original velocity curve to analyze the effect of velocity modeling. The comparison of the 
three velocity curves is shown in Fig. 9. The cyan curve is the original velocity obtained by the well logging; 
the blue curve is the pseudo-well velocity extracted by the CSSI velocity model; the red curve is the pseudo-
well velocity extracted by the high-precision velocity body obtained by the geostatistical inversion.

It can be seen from Fig. 9 that the velocity curve obtained by CSSI is relatively smooth and can reflect 
the velocity trend in the longitudinal direction of the igneous rocks, but the velocity detail information is not 
enough. The velocity curve obtained by geostatistical inversion is in good agreement with the original velocity 
curve of the wells and has high lithological resolution ability. The details of the velocity variation are also rich, 
which can reflect the velocity information on the underground strata more realistically.

To quantitatively analyze the precision of inversion velocity, the CSSI velocity and geostatistical inver-
sion velocity of YM4, FY102, FY104, FY201, FY203, FY204, and other well points are extracted, and the 
YM4 well is the verification well, which is not involved in the inversion. The average velocity of the Permian 
in each well is obtained and compared with the original average velocity of each well. Then the velocity error 
under two inversion methods is calculated (Table 2). The velocity model obtained by the geostatistical inver-
sion is maintained at a good lithologic resolution, and the velocity accuracy is high. The error is controlled 
within 2%. Therefore, compared with the commonly used velocity modeling method, geostatistical inversion 
velocity modeling has a high precision and a superior lithologic resolution.

After comparing the numerical accuracy, the high-precision igneous-rock velocity model based on geo-
statistical inversion and the conventional strata-bound velocity model are applied to the seismic data process-

Fig. 7. Comparative analysis of inversion section of the FY1 well. a, Geostatistical inversion; b, constrained 
sparse-pulse inversion.

T a b l e  2 .  Comparison of velocity errors between two inversion methods
Inversion velocity analysis YM4 FY102 FY104 FY201 FY203 FY204 Mean

Original velocity from 
well

Value, m/s 4368.6 4376.3 4359.7 4359.7 4319.9 4305.4 4348.3

Velocity from CSSI Value, m/s	 4342.7 4370.9 4304.2 4304.1 4314.6 4283.4 4319.9

Error –0.59% –0.12% –1.27% 1.04% –0.12% –0.51% –0.26%

Velocity from geostatisti-
cal inversion

Value, m/s 4401.6 4386.2 4285.3 4344.1 4342.6 4290.1 4341.7

Error 0.75% 0.23% –1.71% 1.98% 0.53% –0.36% 0.23%
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Fig. 8. The three lithologies probability profiles of the FY201, FY203, FY204, and FY202 wells. a, Dacite 
probability body; b, basalt probability body; c, pyroclastic-rock probability body. 
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ing. Figure 10 shows the comparison of the migration results. Figure 10a, shows the offset profile obtained 
using the conventional strata-bound velocity model to process the seismic data, and Fig. 10b, shows the offset 
profile obtained using the high-precision velocity model in this study. If we compare the two profiles, the inter-
nal description of igneous rocks is clearer in the profile of Fig. 10b. The signal-to-noise ratio is improved, and 
the continuity is enhanced. Therefore, in addition to reservoir prediction, geostatistical inversion can be used as 
an effective method to establish the fine velocity model of igneous-rock or other lithology and can provide a 
high-precision velocity model for seismic data processing.

Fig. 9. Comparison of pseudo-velocity curves of different inversion methods in the FY201, FY203, and 
FY204 wells.

Fig. 10. Comparison of offset imaging using different velocity models. a, The conventional strata-bound 
velocity model; b, geostatistical inversion velocity model. 
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Conclusions

In this study, a geostatistical inversion method is applied to lithology identification and velocity modeling 
of the Permian thick igneous rock in the FY area of the northern Tarim Basin. The following conclusions are 
made:

CSSI takes into account seismic data and can roughly reflect the distribution characteristics of lithology. 
On this basis, the geostatistical inversion is used to identify the igneous-rock lithology, which depicts the shape 
and contour of the igneous rocks more clearly. By analyzing the wave impedance and the probability body of 
different igneous-rock lithologies, a more accurate distribution pattern of Permian igneous rocks in the FY area 
is obtained. That is, the lithology of igneous rocks in the upper Permian is dominated by dacite, of which there 
are three to four sets of pyroclastic rocks. The main igneous rock in the middle Permian is basalt. The igneous 
rocks in the lower Permian are pyroclastic rocks with complex lithology which is dominated by tuff and tuffa-
ceous sandstone and mudstone. In addition, there is a relatively continuous pyroclastic rock interlayer between 
dacite and basalt;

The velocity model obtained by geostatistical inversion can reflect the details of the velocity variation of 
the Permian igneous rock. The drilling results have verified the high accuracy of the geostatistical inversion 
velocity modeling. The velocity error of the well point is controlled within 2%, and the average error is 0.23%. 
It can provide a high-precision igneous-rock velocity model for formation pressure prediction and seismic data 
processing. It also provides a reliable basis for variable velocity mapping and trap ascertainment and ultimately 
guides the work of oil exploration and development;

Lithological information obtained by geostatistical inversion is rich, and the resolution is high. However, 
the calculation of inversion is large, and the statistical work is more complex. In addition, the inversion work is 
more suitable for areas that have more drilling wells. In contrast, other modeling methods, such as CSSI and 
tomographic inversion, are more suitable for large-scale and fast-velocity modeling.

This work was supported by the project funded by the Priority Academic Program Development of Ji-
angsu Higher Education Institutions, the China Postdoctoral Science Foundation (grants No. 2014M551703 and 
2018M630631), and the Fundamental Research Funds for the Central Universities (grants No. 2012QNA62 and 
Isujbky-2019-54).
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