Взаимодействие базальтового расплава с ксенолитами каменного угля в трапповой интрузии горы Озёрной, Сибирская платформа

Рябов В. В.

Аннотация

Попавшие в базальтовый расплав обломки угля подверглись дегазации, графитизации и разложению. В результате этого вблизи ксенолитов графитизированного угля в расплаве локально возникло повышенное парциальное давление углеводородных (УВ) флюидов, которое спровоцировало сиалически-мафическую ликвацию базальтового расплава и образование анортозит-гортонолитовой ассоциации пород, а также обособление битумов и рудных минеральных фаз. Ведущую роль в процессах флюидно-магматической дифференциации расплава и образования рудных фаз играли восстановительные свойства УВ-флюидов, высокая степень их сродства с металлами и уникальная собирательная способность в процессе миграции сорбировать микропримеси из пород и расплава и создавать минералого-геохимические аномальные скопления на геохимических барьерах. Разнообразие рудных минеральных фаз связано с экстракцией элементов-примесей Fe, As, Ge, Sb, Sn, S из углей, и микропримесей Fe, Mg, Cu, Ni, Co, Pt, Pd, Rh, Au, Ag из базальтового расплава.

Ключевые слова:

Углеводороды, базальтовый расплав, ликвация, элементы-примеси, рудообразование

Взаимодействие базальтового расплава с ксенолитами каменного угля в трапповой интрузии горы Озёрной, Сибирская платформа

Рябов В.В.¹

¹Институт геологии и минералогии им. В.С. Соболева СО РАН, 630090, Новосибирск, просп. Академика Коптюга, З. Россия.

Введение

Проблема флюидного режима рудно-магматических систем связанных с траппами Сибирской платформы не теряет своей актуальности на протяжении многих десятилетий. Экспериментальные и фактографические данные дают основание с уверенностью предполагать активное участие флюидов в процессах дифференциации магматических расплавов, формирования расслоенных интрузий и рудообразования. Основными летучими компонентами в траппах являются Cl, F, CH₄, S и N [Аплонов, 2001]. В качестве агентов ликвации они стимулируют расщепление магматического расплава на несмешивающиеся силикатно-силикатные, рудно-силикатные и силикатно-солевые жидкости. Возможность этого механизма дифференциации базальтового расплава при формировании расслоенных интрузий неоднократно подтверждалась в экспериментальных работах [Безмен, Персиков, 1979; Маракушев, Безмен, 1980; 1992; Маракушев 1988; Фарфель, 1988] и установлена в траппах находками эмульсии различных по составу стекла в стекле [Рябов, 1989; Ryabov, Lapkovsky, 2010]. Важное значение в рудно-магматическом процессе играют физико-химические параметры состояния системы, в том числе флюидное давление, окислительно-восстановительный потенциал, состав расплава и газовых смесей. При взаимодействии с базальтовыми расплавами флюиды выполняют также каталитическую роль, экстрагируют из них металлы, участвуют в их переносе и накоплении. В магматогенных процессах особая роль углеводородов связана с их свойством создавать восстановительный потенциал, который оказывает влияние на поведение и свойства присутствующих в расплаве других летучих элементов, в том числе галогенам (Слободской, 1981; Рябов и др., 2018), а также металлов переменной валентности [Буслаева, Новгородова, 1989].

Ключевые слова: углеводороды, базальтовый расплав, ликвация, элементы-примеси, рудообразование

Состояние проблемы

На северо-западе Сибирской платформы основная масса интрузивных траппов, в том числе расслоенные рудоносные интрузии норильского типа, локализуется в угленосных отложениях, которые образуют здесь один из крупнейших в мире Тунгусский угольный бассейн [Угольная база..., 2001]. Каменные угли представляют собой потенциальный источник углеводородов (УВ) и это даёт основание предполагать их

возможное участие в связанных с траппами рудно-магматических процессах [Ryabov, Ponomarchuk, 2014; Рябов, 2015].

Разведанные запасы Тунгусского угольного бассейна оцениваются в 1878,8 млрд. т [Еханин и др., 2004]. Качество углей в месторождениях бассейна широко варьирует. [Данилова, 1967; Гаврилова, 1968а; 1968б; Ефимова и др. 1971; Гуревич, Волкова, 2010]. Содержание летучих компонентов в углях в зависимости от их качества изменяется от 50-40% (по Грюнеру) в длиннопламенных разновидностях, до 18-10% - в тощих и 10-8% - в антрацитах. Наиболее метаморфизованные угли до стадии тощих и антрацитов в пределах угольного бассейна образуют зону, вытянутую на 500км с севера на юг вдоль западной его границы [Угольная база..., 2001; Гуревич, Волкова, 2010]. В Норильском районе эта зона имеет ширину 25-40 км, а в нижнем течении р. Нижняя Тунгуска увеличивается до 200 км. Основная масса трапповых интрузий, а также рудные районы, поля и узлы сконцентрированы в западной Приенисейской части угольного бассейна, в которой они образуют Енисейскую рудную провинцию.

Основной причиной площадной зональности метаморфизма углей на территории бассейна считается так называемый суммарный тепловой эффект траппов внедрившихся в угленосную толщу [Угольная база, 2001]. Известно, что дегазация угля в процессе пиролиза начинается при температуре 200°С, а метаморфизация 1 т **паровично-жирного угля** до стадии тощих сопровождается образованием до 50 м³ метана [Данилова, 1967]. Принимая во внимание запасы углей бассейна и степень их метаморфизма, можно говорить об имевшей место дегазации огромных объёмов метана в процессе метаморфизма углей. Она не могла пройти бесследно и есть основание предполагать возможное участие угольных газов в дифференциации базальтовых расплавов и в рудномагматических процессах. В связи с этим, основная цель статьи заключается в том, чтобы на природном материале оценить возможности, механизм и результаты взаимодействия толеит-базальтового расплава и ксенолитов угля, а также показать активное участие углеводородов в процессах дифференциации расплава и рудообразования.

Каменный и аналитический материал

Коллекция образцов для аналитических исследований была собрана в процессе полевых экспедиционных работ геологического отряда лаборатории № 213 ИГМ СО РАН в Курейском рудном районе, на территории которого находится рудоносная трапповая интрузии горы Озёрной.

Аналитические исследования вещественного состава пород и руд проводились в ЦКБ многоэлементных и изотопных исследований СО РАН. Они включали рентгенофлуоресцентный анализ пород, рентгеноспектральный анализ минералов на микроанализаторах Cameca Camebax-Micro и JEOL JXA-8100 и на сканирующим электронном микроскопе LEO 143 OVP, изотопный анализ углерода и атомноабсорбционный метод при определении содержания цветных и благородных металлов в породах. Определение элементного состава образцов горных пород проводилось методом РФА-СИ с использованием синхротронного излучения разработанный в ИЯФ СО РАН.

Результаты исследования Геологическая характеристика Курейского рудного района

Интрузия горы Озёрной является одним из шести массивов образующих крупнейший (30х70 км) на северо-западе Сибирской платформы Курейско-Горбиачинский вулкано-плутон [Ryabov, Lapkovsky, 2010].

Интрузии вулкано-плутона залегают в угленосных терригенных отложениях Тунгусского угольного бассейна. В Курейском районе установлен максимальный на Сибирской платформе стратиграфический разрез продуктивно-угленосной толщи мощностью 1000-1200м, в котором продуктивная угленосность составляет 16 млн т/км² (Угольная база, 2001). Угли района метаморфизованы до стадии отощённых, тощих и антрацитов. Кроме угольных месторождений, в пределах вулкано-плутона находятся три месторождения графита, одно из которых (Верхне-Гнутихинское) располагается в породах, подстилающих субпластовую интрузию горы Озёрной, которая является предметом нашего исследования.

Некоторое представление о микроэлементном составе углей Курейского района можно получить в таблице 1, в которой представлены материалы из восьми пластов угля, вскрытых одной из буровых скважин. К указанным в таблице химическим элементам следует добавить постоянно присутствующие в углях серу и хлор (Войткевич и др., 1990). По данным этих авторов содержание серы зависит от качества углей и по мере повышения степени их метаморфизма величина S понижается от **2,23 мас.%** - в длиннопламенных, до **0,74 мас.%** – в антрацитах, а среднее содержание Сl в углях составляет 1100 г/т. В графитах Курейского месторождения содержание серы по нашим данным варьирует от 0 до 2 мас.%.

Изотопный состав углерода $\delta^{13}C_{PDB}$ в углях Курейского района колеблется в диапазоне -22,7‰ ÷ -24,5‰ (n=19), а в графитах Курейского месторождения -23,5‰ ÷ 25,5‰ (n=10).

Краткая информация по петрологии интрузии горы Озёрной

Интрузия представляет собой субпластовое тело габбродолеритов мощностью 120м.

Она дифференцирована от безоливиновых до оливиновых габбро-долеритов. В габбродолеритах отмечаются мелкие шлиры пегматоидных габбродолеритов и линзы троктолитовых габбродолеритов, гомеогенные включения микродолеритов и авгититовых афанитов, участки брекчиевидных пород и желваки самородного железа. Содержание MgO в породах меняется от 7,61 до 11,32 мас.%. В средневзвешенном составе пород MgO составляет 8,56 мас. % (n=25). Рудно-петрологическая характеристика интрузии приводится в ряде публикаций разных авторов, в том числе [Олейников и др., 1985; Ryabov, Lapkovsky, 2010].

Основным типом пород интрузии г. Озёрной являются оливин-плагиофировые габбродолериты. Габбродолериты состоят из оливина (Fa₃₇₋₄₀) 3-5%, редко до 10-12%, клинопироксена (Wo₄₂₋₃₄En₄₀₋₄₆Fs₁₂₋₂₂) 40-50%, плагиоклаза (An₉₁₋₄₆) 40-50%, из рудных отмечаются ильменит (MgO 2,61 мас.%) и титаномагнетит. В породах встречаются

ортопироксен (Fs₃₁₋₃₇) и слюда биотит-флогопитового ряда *f*=(FeO x 100/(FeO+MgO) 27-44 ат. %). Флогопиты с *f* =30-31 ат. % содержат F 0,94-0,98 мас.%; Cl 0,18-0,29 мас.%)

Желваки самородного железа. представляют собой компактные скопления в габбро-долеритах вкрапленных и богатовкрапленных губчатых и сидеронитовых руд металлического железа. Вес желваков варьирует от 50-500 г до 3-5 кг, реже более. Основными рудными минералами Pt-Fe-метальных руд в желваках самородного железа [Рябов, Аношин, 1999] являются разновидности Fe с переменным количеством Ni и Co представленное серией минералов: феррит, камасит, реже тэнит, тетратэнит, аваруит, из других минералов отмечаются когенит, самородная медь, графит, а также битумы [Олейников и др., 1985; Ryabov, Lapkovsky, 2010].

Графит и битумы в породах и рудах интрузии. Графит образует пластинчатые и чешуйчатые срастания, сферолиты и другие структурированные образования [Лапковский, 2010]. В губчатых рудах самородного железа графит нередко встречается в виде кристаллов кубического габитуса, описанных в литературе как клифтонит [Олейников и др. 1985; Ryabov, Lapkovsky, 2010; Лапковский, 2010]. В габбродолеритах битумы проявляются в виде мелкой (2-5мм) вкрапленности, образуют скопления черного плотного углеродистого вещества с блестящим раковистым изломом, а в желваках самородного железа наблюдаются в виде включений, обрастающих кристаллами клифтонита.

Исследования показали, что встречающиеся в самородном железе битумы представлены антраксолитом. В двух его анализах установлено: 1. С 89,2%, Н 2,9%, N 4,1%, S 3,8%; 2. С 94%, Н 4,3%, S 1,7% (Округин и др., 1991). Изотопный состав углерода δ^{13} С_{РDB} антраксолита (Обр. ОЗ-87) -23,5‰ (Ryabov, Lapkovsky, 2010), а δ^{13} С_{РDB} клифтонитов из пород интрузии г. Озёрной: -23,78‰ [Олейников и др., 1985] и -26,2‰ (Обр. ОЗ-63) по нашим данным.

Магматогенная брекчия ксенолитов графитизированного угля в габбродолеритах северного склона горы Озёрной

На задернованном северном склоне горы Озёрной отмечаются крупноглыбовые осыпи и редкие скальные обнажения коренных пород. В одном из обнажений интрузии в оливинсодержащих габбродолеритах были обнаружены два желвака губчатого самородного железа **весом 15 кг и 30 кг** и небольшой по площади (около 1 м²) участок магматогенной брекчии. В разрезе интрузии желваки самородного железа и магматогенная брекчия занимают подвешенное положение относительно подошвы магматического тела.

Магматогенная брекчия состоит из обломков графитизированного угля, сцементированных **битумсодержащими оливинитами и троктолитами**, миароловыми битум-оливиновыми и миндалекаменными биотит-хлоритовыми габбродолеритами. Контакты различных по составу пород резкие, без следов закаливания. В экзоконтакте брекчии отмечается небольшое гомеогенное включение мелкозернистого пироксенитового афанита.

Ксенолиты графитизированного угля

Магматогенная брекчия состоит из различных по размеру пластинчатых обломков, и крошки графитизированного угля (далее в описании – графита). Размер наиболее крупных обломков в срезах образцов варьирует от 7х15 см до 3х10 см. Вблизи крупных обломков графита локально отмечаются скопления мелких его обломков (0,1-0,5) х (0,3-1,5) см и одиночные пластинки, а также крошка углистого материала и вкрапленность битумов. Графит обломков образует тонкочешуйчатые агрегаты. Крупные обломки графита разбиты системой трещин отдельности на пластинки шириной 0,1-0,3мм. Трещины заполнены трахитоидным агрегатом мелких призм плагиоклаза An₇₄₋₆₆ (рис. 1 а, б). Из других минералов в прожилках иногда встречаются: ортопироксен, клинопироксен Wo₃₆₋₃₇En₃₉₋₄₁Fs₂₅₋₂₂ (TiO₂ 1,44-1,3 мас.%, Al₂O₃ 1,79-1,56 мас.%), амфибол *f* 50 ат.% (TiO₂ 0,77, Al₂O₃ 0,97 мас.%), ильменит (MgO 0,16-0,17 мас.%, MnO 0,37-0,4 мас.%) и пирротин.

Между крупными ксенолитами графита располагаются мелкие обломки графита с нитевидными трещинами отдельности, которые заполнены мелкими кристаллами плагиоклаза, а также пластинки, пакеты тонких пластинок графита, крошка углистого вещества и дорожки из мелкой сыпи углеродистого вещества разделённые трахитоидным агрегатом мелких призм плагиоклаза. Кроме того, в брекчии встречаются реликты и структуры просвечивания мелких резорбированных обломков графита в виде дорожек точечных включений углеродистого вещества и обрамляющих их вытянутых по форме участков мелкозернистого плагиоклазита с трахитоидной структурой. Иногда углеродистое вещество и мелкие обломки графита полностью отсутствуют и в поле офитопойкилоофитовой структуры габбродолерита отмечаются только линзы с трахитоидным агрегатом мелких призм плагиоклаза.

Битумы в габбродолеритах образуют мелкую вкрапленность и небольшие скопления. В габбродолеритах встречаются обломковидные участки состоящие из мелких призм плагиоклаза сцементированных битумом (рис. 1а), а также участки с богатой вкрапленностью битумов (до 60-70% площади шлифа), в которой располагаются породообразующие минералы габбродолерита без следов изменения (рис. 1в). В скоплениях битума можно видеть отчётливое пористое его строение, а на поверхности -«кратеры» с концентрическими валиками и отверстием в центре, которые напоминают газовые каналы.

Новообразования «кубического» графита

Во вкрапленниках самородного железа изредка встречаются новообразования графита в виде одиночных кристаллов или сростков кристаллов кубического габитуса, ранее описанных в литературе как клифтонит (рис. 2г-и). Головки этих кристаллов обычно нарастают на силикатную породу или обрастают вкрапленники битума. Грани куба, как правило, находятся на контакте с самородным железом или карбидом железа. Внутренняя часть кристаллов графита кубического габитуса имеет пластинчато-чешуйчатое строение (см. рис. 2е-и).

Изотопный состав углерода $\delta^{13}C_{PDB}$ в ксенолитах графита варьирует: в крупном ксенолите графита (O3-154) $\delta^{13}C_{PDB}$ -22,1 ‰, в другом крупном ксенолите (O3-157) $\delta^{13}C_{PDB}$ -23,5‰, в мелких обломках графита из этого же образца -25,7‰ и -27,9‰.

Петрография пород цемента магматогенной брекчии

Оливинит состоит из гранобластового агрегата оливина (90-95%), плагиоклаза (3-5%), небольшого количества битумов, единичных зёрен магнетита и ильменита в виде мелких вкрапленников и включений в оливине (рис. 1в). Оливин имеет состав Fa₄₅₋₅₀ (MnO 0,35-0,45 мас. %; CaO 0,1-0,14 мас.%), иногда он обрастает каймой ортопироксена Wo₄En₆₁Fs₃₅. В виде включений в оливине встречается ильменит. Призмы плагиоклаза An₆₅ отмечается в интерстициях между зёрен оливина и реже в виде мелких вростков An₆₈ в его краевых зонах. В составе магнетита содержится Al₂O₃0,07 мас. % и MgO 0,20 мас.%, в ильмените MgO 0,52-2,68 мас. %, MnO 0,34-0,53 мас. %, V₂O₅0,35-0,50 мас. %.

Троктолит имеет порфировидную структуру (рис. 16). Порода состоит из оливина (20-60%) и плагиоклаза (35-70%), локально отмечаются клино- и ортопироксен (5-15%), ильменит, слюда и переменное количество битумов (от 1-5% до 20-30%). Состав троктолитового габбродолерита обр. O3-154 (в мас.%): SiO₂ 41,61; TiO₂ 0,96; Al₂O₃ 9,13; Fe₂O₃ 24,67; MnO 0,29; MgO 13,19; CaO 7,13; Na₂O 0,66; K₂O 0,17; P₂O₅ 0,11; п.п.п. 0,7.

Оливин образует изометричные фенокристы Fa₄₈₋₅₁, в краевых частях которых отмечаются вростки мелких призмочек плагиоклаза. Количество оливина в троктолитах широко варьирует. В связи с этим порода приобретает состав мелатроктолита, **битумсодержащих троктолита или троктолитового габбродолерита.** Уменьшение количества оливина сопровождается увеличением в породе количества плагиоклаза и/или орто- и клинопироксена, битумов и рудных минералов. Зональные фенокристы плагиоклаза имеют состав (центр-край) – An₈₀₋₇₅ – An₆₆, включения в оливине - An₇₅ - An₆₉, хадакристы в клинопироксене – An₇₂₋₆₃, лейсты в базисе – An₇₄. Пироксены образуют ойкокристы: кинопироксена Wo₃₇₋₃₉En₄₄₋₄₅Fs₁₉₋₁₆ (TiO₂ 1,11 мас. %, Al₂O₃ 1,39 мас. %) и ортопироксена Wo₉En₅₁Fs₄₀ (TiO₂ 0,63 мас. %, Al₂O₃ 0,75 мас. %), а также мелкие зёрна в основной массе En₅₁Fs₄₉. В породе отмечаются листочки флогопита *f* 12 ат. % (TiO₂ 1,69 мас. %, Cl 0,23 мас. %), а на участках обогащённых битумом - биотит *f* 68 ат. % (NiO 3,34 мас.%; Cl 3,53 мас. %), и з рудных минералов встречаются ильменит (MgO 0,49 мас. %, MnO 0,32 мас. %) и самородное железо. Битумы распределяются в породе неравномерно в виде мелкой вкрапленности и комковатых скоплений в интерстициях мелатроктолитов.

Битум-оливиновые миароловые габбродолериты представляют собой офитопойкилоофитовые габбродолериты, в интерстициях которых находятся небольшие участки серо-зелёного скрытокристаллического прожилковидные выделения слабо И анизотропного хлоритоподобного минерала с включениями миарол нередко в обрамлении чёрного битума (рис. 1г-м). На стенках миароловых полостей нарастают щётки кристаллов оливина, а в центральных частях полостей находятся битумы. В разных полостях количественное соотношение оливина и битума варьирует. Встречаются миаролы полностью заполненные гранобластовым агрегатом оливина или только битумом или битумом с редкой вкрапленностью мелких кристаллов оливина. В оливине нередко находятся мелкие округлые включения битума (см. рис. 1е, л, м). Вдоль центральной части прожилков хлоритоподобного минерала иногда наблюдаются цепочки линзовидных полостей с различным составом заполнителя. Количество миарол в габбродолерите широко варьирует и порою достигает 60-80% площади среза породы. Скопления миарол располагаются вблизи ксенолитов графита, а по мере удаления от них количество их уменьшается.

В битуминозных породах в базисе породы и в миаролах железистость оливина изменяется от Fa₁₀₀ до Fa₇₈. Содержание элементов-примесей в оливинах широко

варьирует: в оливине Fa₁₀₀ установлена примесь CoO 0,63 мас.%, в Fa₈₆ - NiO 1,06 мас. %. Щётки оливина на стенках миарол имеют состав Fa₉₂₋₈₂. Локально в щётках кристаллов оливина Fa₈₂₋₈₅ из миарол определено NiO 0,01-0,05 мас.%, MnO 0,21-0,27 мас.%. В других оливинах из миарол примеси не обнаружены. В габбро-долерите, содержащем оливинбитумные миаролы и вкрапленность самородного железа, фенокристы плагиоклаза имеют состав (центр-край) An₉₂₋₆₄, а призмы базиса породы - An₆₅₋₆₂.

Биотит-хлоритовые миндалекаменные габбродолериты располагаются на удалении от ксенолитов графита на периферии участка магматогенной брекчии. В интерстициях этих породах сохраняются небольшие участки с хлоритоподобным минералом и редкими битум-оливиновыми миаролами. Характерной особенностью этих появление большого количества миндалин, пород является заполненных гидроксилсодержащими минералами (рис. 2а, б). В миндалинах встречаются сферолиты радиально лучистого зелёного хлорита (f 63-76 ат.%) и зональной слюды от бесцветного флогопита (*f* 12 ат.%, Cl 0,23 мас.%) до бурого, зелёного и сине-зелёного биотита *f* 64 ат. % (Cl 3,34 - 3,47 мас.%). Примечательным для этих пород является увеличение степени изменённости минералов. Агрегаты зёрен оливина в миаролах замещаются краснокоричневым боулингитом или слюдистым иддингситом, плагиоклаз - пренитом, клинопироксен – хлоритом. Из других минералов в базисе породы отмечаются амфибол, гидрослюда и игольчатые кристаллы апатита (Cl 1,58-2,05 мас.%).

Гомеогенное включение плагиоклаз-пироксенового афанита

Оно располагается на периферии участка магматогенной брекчии на границе с миндалекаменным габбродолеритом. Форма включения линзовидная, размер (5-7) х (12-15) см. Порода имеет розовый цвет, мелкозернистую грануло-долеритовую структуру. Она состоит из клинопироксена (80-90%) и плагиоклаза (10-20%)..

Контакт афанита и габбродолерита резкий без следов закаливания (рис. 2в). В приконтактовой зоне в габбродолерите отмечается повышенное количество серо-зелёного скрытокристаллического хлоритоподобного минерала с сыпью углеродистого вещества и обильные миндалины, которые затушевывают границу раздела пород. В обрамлении гомеогенного включения в габбродолерите встречается мелкая вкрапленность герцинита (Al₂O₃ 58,06 мас.%, FeO 38,27 мас.%, MgO 3,33 мас.%).

Под микроскопом структура гомеогенного включения гранулитовая и гранулодолеритовая с элементами микропорфировой. По составу гомеогенное включение отвечает долериту (в мас. %): SiO₂ 48,09; TiO₂ 1,0; Al₂O₃ 14,68; Fe₂O₃ 7,82; MnO 0,10; MgO 8,1; CaO 16,41; Na₂O 2,29; K₂O 0,15; P₂O₅ 0,04; п.п.п. 1,31.

Порода состоит из гранул клинопироксена Wo₃₇₋₃₉En₄₃₋₄₀Fs₂₀₋₂₁ (TiO₂ 1,44-1,02, Al₂O₃ 1,46-1,44 мас.%), которые изредка срастаются в мелкие ойкокристы. Плагиоклаз образует ксеноморфные зёрна An₆₉, которые цементируют гранулы клинопироксена. В небольших количествах в афаните отмечается вкрапленность ильменита (MgO 0,41 мас. %, MnO 0,36 мас. %).

Рудная минерализация в породах магматогенной брекчии

Породы магматогенной брекчии имеют повышенные содержания цветных и благородных металлов (табл. 2), которые связаны с рудной минерализацией в

битуминозных породах. Наиболее распространённым рудным минералом является самородное железо, вкрапленность которого размером менее **1 мм,** редко до 2-3 мм неравномерно распределяется в породе небольшими скоплениями (см. рис. 2г-и). Количество самородного железа составляет 3-5%, редко 12-15%, локально до 20-30%. Самородное железо представлено стерильным от примесей ферритом или ферритом с низким содержанием цветных металлов: Ni 0,48-0,8 мас.%, Co 0,4-0,68 мас.%.

Исследование пород на сканирующем электронном микроскопе позволило обнаружить в цементе магматогенной брекчии помимо вкрапленности феррита большое количество различных по составу мельчайших наноразмерных вкрапленников рудных фаз. Рудная вкрапленность в переменных количествах была рассеяна в пределах околоксенолитовой зоны магматогенной брекчии графита, а основное её количество было приурочено к битуминозным троктолитовым габбродолеритам и габбродолеритам содержащим битум-оливиновые миаролы. В самих миаролах рудные минеральные фазы отсутствовали. Парагенезисы рудных и силикатных минералов изучались на микрозонде и на электронном микроскопе. Всего в этих породах было проанализировано свыше 300 зёрен рудных минеральных фаз (Рябов, 2014).

Наиболее распространенным рудным минералом в магматогенной брекчии является самородное железо, ИЗ других минералов установлены широко распространённые в сульфидных месторождениях норильского типа пирротин, халькопирит, пентландит, борнит, халькозин, кубанит, хизлевудит, троилит и пирит. Некоторое представление о формах проявления рудной вкрапленности можно получить из (рис. 2 к-т). Как своеобразие состава пентландита следует отметить широкие вариации в нём содержания Со (5,1; 8,8; 10,2; 12,9; 13,1; 13,9 и 25,8 мас.%). Кроме того, были обнаружены минералы характерные для Pt-Fe-метальных руд джалтул-хунгтукунского типа [Рябов, Аношин,1999], а также новые и редко встречающиеся разновидности самородных минералов и интерметаллидов, в которых нередко отмечается повышенное содержание необычных для этих минеральных фаз примесей. Среди этих минеральных фаз установлены: аваруит с примесью в одном случае Ge 4,4 мас.%, а в другом - Ge 8,3 мас.%, Sb 1,5 мас.%; As 8,7 мас.%; S 1 мас. %, тэнит с примесью Со 3-5,2-8,5 мас.% и Ge 1-1,2 мас.%, камасит с примесью Со 9,2 мас.% и Ni 7,1 мас.%. Из других рудных фаз определены: орселит, ниснит, аргентит, самородные Со, Ві и Ад. Некоторое представление о составе минеральных фаз с участием предположительно микропримесей угля нормированных на Ni можно получить из (рис. 3).

Обсуждение результатов

Интрузия горы Озёрной представляет собой слабо дифференцированный трапповый силл **толеит-базальтового состава**, в котором была обнаружена магматогенная брекчия с обломками графитизированного каменного угля. Обломки угля были захвачены базальтовым расплавом из вмещающих пород и вынесены в интрузивную камеру, в которой они оказались на удалении от контактов интрузии в подвешенном относительно подошвы магматического тела состоянии. Принимая это во внимание, можно предполагать, что **все явления, описанные в магматогенной брекчии и в околоксенолитовой зоне породы**, возникли при взаимодействии толеит-базальтового расплава с УВ-флюидами, источником которых были ксенолиты каменного **угля.**

Начальная температура базальтового расплава была около 1200°С и оказавшиеся в нём ксенолиты угля подверглись продолжительному по времени высокотемпературному прокаливанию на протяжении всего периода консолидации массива. В результате пиролиза ксенолиты угля испытали быструю по скорости дегазацию, ускоренный метаморфизм до состояния графита и частично претерпели разложение углеродного вещества [Алексеева, Верба, 1971; Плюснина и др., 2009]. Реакция разложения углеродистого вещества генерировала высокий восстановительный потенциал, который возник в ореоле магматогенной брекчии, а также повышала реакционную активность углерода и газообразных УВ продуктов при взаимодействии их с базальтовым расплавом [Плюснина и др., 2009].

Прокаливание ксенолитов угля привело к большой потере содержащихся в них летучих компонентов, уменьшению объёма обломков угля, их растрескиванию и раскрытию трещин пластовой отдельности, а также образованию вблизи ксенолитов контракционных усадочных миароловых полостей, а на удалении - газовых миндалин. Пиролиз и дегазация угля создали в околоксенолитовой области базальтового расплава зону с высоким парциальным давлением восстановительных (угольных) флюидов. Главным компонентом флюидов был CH₄, а среди других летучих компонентов в небольшом количестве присутствовали тяжёлые **УВ, Н**₂, **СО, Cl, S, N**₂, **H**₂**O**.

Из экспериментальных исследований известно, что воздействие восстановленных газов на магматические расплавы приводят к ликвации [Маракушев, Безмен, 1980; 1992; Маракушев, 1988]. Можно предполагать, что в изученной нами интрузии г. Озёрной, отделившиеся при прокаливании ксенолитов угля УВ-флюиды, взаимодействуя с толеитбазальтовым расплавом, спровоцировали флюидно-магматическую дифференциацию. В результате этого произошло ликвационное сиалически-мафическое расщепление расплава и отделение от него металлоносного УВ-флюида. Основными оксидами сиалического ликвата были SiO₂, Al₂O₃, CaO, Na₂O, K₂O, а мафического - SiO₂, FeO, MgO. Содержание оксидов в ликватах соответствовало плагиоклазнормативному и оливиннормативному составам жидкостей и завершилось образованием лабрадор-битовнитовых анортозитов и гортонолит-фаялитовых оливинитов.

В процессе сиалически-мафической ликвации расплава его флюидная составляющая накапливалась в мафической жидкости и спровоцировала в ней второй этап ликвации, который выразился в отделении от мафического ликвата металлоносного УВфлюида и расщеплении его на битумную (битум-оливиновую) и рудную вкрапленность.

Известно, что УВ обладают замечательными свойствами, которые заключаются в их восстановительном характере, в высокой степени сродства со всеми химическими элементами, кроме инертных газов, и особенно сродством с металлами, а также в «собирательной» способности по отношению к рассеянным в породах и расплавах микроэлементам, через которые они фильтруются [Буслаева, Новгородова, 1989]. Можно предполагать, что все эти свойства УВ проявились при дегазации ксенолитов угля. УВфлюиды экстрагировали и выносили из углей содержавшиеся в них элементы-примеси, среди которых были Fe, As, Ge, Sb, Sn, S, Cl (см. табл. 1). Обогащённые угольными микроэлементами УВ-флюиды мигрировали сквозь базальтовый расплав и дополнительно сорбировали из него рассеянные микропримеси Fe, Mg, Cu, Ni, Co, Pt, Pd, Rh, Au, Ag, восстанавливали их до нульвалентного состояния и без перевода в расплав, создавали металлоорганические соединения (МОС) [Буслаева, Новгородова, 1989].

Формирование МОС происходило в высоко восстановительных условиях, но этот процесс не был бесконечным и прекращался по мере повышения окислительного потенциала даже при избытке УВ и углерода [Персиков и др., 2018]. Рост окислительного потенциала в магматогенной системе провоцировал сам процесс восстановления оксидов при их взаимодействии с УВ, как это можно видеть из реакции: 2MeO + CH₄ = 2Me + C + 2H₂O, где Me = Fe. В результате возросший окислительный потенциал вызвал разложение металлоносного УВ-флюида и создание битумной и рудной минеральной фаз. Битумы сформировали в силикатной матрице целые поля и вкрапленность в габбродолеритах, а также совместно с оливином заполнили миароловые полости. Диссоциация МОС привела к образованию наноразмерных минеральных фаз самородных элементов, интерметаллидов, карбидов, сульфидов, арсенидов, стибнидов, которые создали вкрапленность и рудные скопления, описанные как минералогогеохимические аномалии [Рябов, 2014]. Наиболее богатая вкрапленность самородных металлов в изученном объекте проявилась в виде желваков самородного железа, которое для ряда металлов играло роль коллектора.

Особенностью рудной минерализации в околоксенолитовом пространстве являются: 1 – присутствие минеральных фаз с участием микроэлементов из углей и базальтового расплава, 2 – многообразие состава минеральных рудных фаз и проявление самородных металлов и экзотических интерметаллидов с участием Pt, Pd, Ag, Ni, Co, Sn, Bi, Ge, As, Sb, 3 - мелкие размеры зёрен и совместное нахождение различных рудных минеральных фаз на небольшой площади и в виде включений в силикатах, которое свидетельствует об их раннем образовании на магматической стадии.

Разложение МОС сопровождалось образованием самородного железа и новообразований графита кубического габитуса, ранее описанного как кристаллы клифтонита. До недавнего времени существовало представление, что клифтонит представляет собой параморфозу по алмазу или образовался при замещении минерала кубической сингонии [Слодкевич, 1982; Левашов, Олейников, 1984]. Позднее нами был предложен механизм образования кубических форм у графита с привлечением экспериментальных работ в органической химии [Рябов, 2018].

Под микроскопом можно видеть, что кубическую форму кристаллам «клифтонита» создаёт только тонкая плёнка **углерода** его внешнего обрамления, а заключенный в кубическом футляре наполнитель представлен чешуйчато-пластинчатым агрегатом обычного гексагонального графита [Лапковский, 2010, Рябов, 2018]. Структурированный графитовый внутренний наполнитель кубических футляров имеет секториальное строение, в виде сходящихся в центре куба пирамид, сложенных пакетами пластинчатых кристаллов, которые при погасании образуют структуру песочных часов (рис. 23) [Олейников и др., 1985; Ryabov, Lapkovsky, 2014]. Рентгеноструктурный анализ «клифтонита» из ассоциации с самородным железом в интрузии г. Озёрной показал **его сходство** с гексагональным графитом [Олейников и др., 1985].

Проведённые исследования позволяют предполагать, что формирование внешней кубической формы графита могло происходить при участии особого класса МОС – комплексов графита с каким-либо из переходных металлов Fe, Ni, Co, Pd, Cu, Mn и др.. Эти комплексы представляют собой соединения, полученные путём внедрения переходного металла, например, атомарного железа в пространство между параллельными сетками атомов углерода в графите [Вольпин, 1980]. Установлено, что под влиянием этих

металлокомплексов графита (МКГ) происходит каталитический распад углеродной графитовой сетки (графитовой структуры) и создание кубической (алмазной) структуры графита [Вольпин, 1980]. Можно предполагать, что в изученном нами случае переходным металлом было железо, а в результате каталитического воздействия МКГ на графит произошло разрушение структуры с шестиугольными ячейками из атомов углерода типа бензольных колец и образование кубической структуры. Преобразование структуры графита в нашем случае, по-видимому, происходило только в узкой зоне контакта новообразований графита и самородного железа и вглубь кристалла каталитическое действие МКГ не распространялось. Поэтому кубическую форму имел только футляр минерала.

На заключительных этапах эволюции флюидно-магматической системы произошло повышение окислительного потенциала, которое в габбродолеритах периферической части магматогенной брекчии проявилось в образовании ореола миндалин, заполненных гидроксилсодержащими минералами.

Относительно гомеогенного включения в экзоконтакте магматогенной брекчии следует отметить, что его происхождение имеет сходство с образованием пегматоидных шлиров. Те и другие представляют собой «газовые пузыри», т.е. участки расплава, обогащённые летучими компонентами. Формирование гомеогенного включения в габбродолеритах происходило при участии УВ, о нахождении которых свидетельствует розовый цвет породы, обусловленный присутствием в клинопироксене восстановленного до Ti³⁺, являющегося хромофором. В отличие от пегматоидных шлиров плагиоклазпироксенитовые афаниты испытали переохлаждение базальтового расплава, которое привело к его гетероморфной кристаллизации и образованию гранулитовой структуры породы (Рашин, 1961).

Заключение

Важным результатом проведённого исследования является установление активного участия углеводородов каменных углей в процессах флюидно-магматической дифференциации с сиалически-мафической ликвацией толеит-базальтового расплава, а также экстрагирования и концентрирования рудообразующих металлов. Полученные данные позволяют по-новому оценить устоявшиеся представления на происхождение расслоенных трапповых интрузий и связанных с ними рудных месторождений, а также внести существенные коррективы в разработку поисковых критериев обнаружения рудных месторождений. Можно предполагать, что в случае крупномасштабной реализации описанного здесь флюидно-магматического процесса не исключается возможность образования нового нетрадиционного типа руд и месторождений.

Выводы

Попавшие в базальтовый расплав, ксенолиты каменного угля подвергаются пиролизу, в результате которого происходит их графитизация, дегазация и разложение, а в околоксенолитовой области расплава создаётся повышенное давление углеводородных флюидов.

Взаимодействие базальтового расплава с углеводородными флюидами стимулирует флюидно-магматическую дифференциацию расплава с ликвационным сиалическимафическим расщеплением на нормативные плагиоклазитовую и оливинитовую жидкости, а также сопутствующее ему обособление металлоносных углеводородных флюидов с последующей их диссоциацией на битумы и вкрапленность рудных минеральных фаз.

Восстановительный характер углеводородов, высокая степень их сродства с металлами и собирательные свойства по отношению к рассеянным микроэлементам способствовали флюидной экстракции из угля и базальтового расплава рассеянных элементов-примесей, их транспортировке в виде металлоорганических соединений, а при повышении окислительного потенциала диссоциации и созданию рудных скоплений в виде минералого-геохимических аномалий рудных фаз железа, цветных и благородных металлов.

Литература

Алексеева А.Б., Верба М.Л. Влияние интрузий на битуминозность углей Тунгусской серии Норильского района // Геология и полезные ископаемые Норильского района. Мат-лы II конф. норильских геологов. Норильск, 1971, с 292–294.

Аплонов В.С. Термобарогеохимическая модель Талнахского платиноидноникелевого месторождения. Санкт-Петербург, ВНИИОкеангеология. 2001, 234 с.

Безмен Н.Н., Персиков Э.С. Влияние водорода на дифференциацию основных магматических расплавов // Доклады Академии наук СССР, 1979, т. 248, № 5, с. 1176–1179.

Буслаева Е.Ю., Новгородова М.И. Элементоорганические соединения в проблеме миграции рудного вещества. Москва, Наука, 1989, 152 с.

Войткевич Г.В., Кокин А.В., Мирошников А.Е., Прохоров В.Г. Справочник по геохимии. Москва, Недра, 1990, 480 с.

Вольпин М.Е. Комплексы графита с переходными металлами – новый класс металлоорганических соединений // Вестник Академии наук СССР, 1980, № 3, с. 21–27.

Гаврилова О.И. Химические свойства и метаморфизм углей из зон контактов с секущими интрузиями / Вопросы метаморфизма углей и эпигенеза вмещающих пород. Ленинград, Наука, 1968а, с. 163–182.

Гаврилова О.И. К вопросу о возможных температурах при контактовом метаморфизме углей / Вопросы метаморфизма углей и эпигенеза вмещающих пород. Ленинград, Наука, 1968б, с. 182–187.

Гуревич А.Б., Волкова Г.М. Контактовый метаморфизм углей Тунгусского и Таймырского бассейнов // Разведка и охрана недр, 2010, № 12, с. 63–69.

Данилова Т.Р. Геологические факторы, определившие газоносность Талнахского медно-никелевого месторождения // Учёные записки НИИГА, регион. Геология, 1967, вып. 10, с. 177–184.

Ефимова И.Н., Афанасьева А.И., Данилова Т.Р. О сорбционной метаноемкости углей Талнахского месторождения // Геология и полезные ископаемые Норильского района, 1971, с. 142–145.

Еханин А.Г., Колчин А.В., Пантелеева А.В., Цыкин С.Р., Шибистов Б.В. Минерально-сырьевые ресурсы Красноярского края // Разведка и охрана недр, 2004, № 6, с. 2–6.

Лапковский А.А. Морфологические разновидности графита в рудах самородного железа интрузивного массива Джалтул (северо-запад Сибирской платформы) // Электронный сборник тезисов Пятой Сибирской конференции молодых учёных по наукам о Земле. Петрология. 29 ноября - 2 декабря 2010 года, Новосибирск, 2010. http://sibconf.igm.nsc.ru.

Левашов В.К., Олейников Б.В. Земной клифтонит в ассоциации с самородным железом габбродолеритов горы Озерной (Сибирская платформа) // Доклады Академии наук СССР, 1984, т. 278, № 3, с. 719–722.

Маракушев А.А. Петрогенезис. Москва, Недра, 1988, 293 с.

Маракушев А.А., Безмен Н.И. Специфика ликвации магм под давлением водорода в связи с генезисом хондритов // Доклады Академии наук СССР, 1980, т. 251, № 5, с. 1222–1224.

Маракушев А.А., Безмен Н.И. Минералого-петрологические критерии рудоносности изверженных пород. Москва, Недра, 1992, 317 с.

Округин А.В., Иевлев А.А., Зуева И.Н. Антраксолит в самородном железе траппов Сибирской платформы // Самородное металлообразование в магматическом процессе. Сборник научных трудов ЯНЦ СО АН СССР, 1991, Якутск, с. 17–28.

Олейников Б.В., Округин А.В., Томшин М.Д., Левашов В.К., Варганов А.С., Копылова А.Г., Панков В.Ю. Самородное металлообразование в платформенных базитах (отв. ред. В.В. Ковальский). Якутск: ЯФ СО АН СССР, 1985, 188 с.

Персиков Э.С., Бухтияров П.Г., Некрасов А.Н. Экспериментальные исследования процесса взаимодействия восстановительного флюида с базальтовым расплавом в условиях земной коры // Проблемы магматической и метаморфической петрологии, геодинамики и происхождения алмазов. Конф. посвящ. 110-летию В.С. Соболева, 2018, с. 18.

Плюснина Л.П., Кузьмина Т.В., Сафронов П.П. Трансформация битумоиды – графит (по экспериментальным данным). // Доклады Академии наук, 2009, т. 425, № 1, с. 94–97.

Рашин Г.А. К вопросу об особой роли железа при кристаллизации силикатных расплавов в неравновесных условиях // Известия Академии наук СССР, Сер. Геол, 1961, № 11, с. 42–49.

Рябов В.В. Ликвация в природных стеклах (на примере траппов). Новосибирск, Наука, 1989, 223 с.

Рябов В.В. Экзотические полиминеральные рудные скопления в трапповых интрузиях Сибирской платформы // Геология и минерально-сырьевые ресурсы Сибири, Томск, 2014, № 3, ч. 1, с. 101–104.

Рябов В.В. Источники флюидов в траппах и рудах Сибирской платформы // Флюидный режим эндогенных процессов континентальной литосферы. Материалы всерос. совещ. (6-9 октября 2015 г.). Иркутск, Институт земной коры СО РАН, 2015, с. 156–158.

Рябов В.В. Кубический графит в самородном железе сибирских траппов // Проблемы магматической и метаморфической петрологии, геодинамики и происхождения алмазов. Конф. посвящ. 110-летию В.С. Соболева, 2018, с. 57.

Рябов В.В., Аношин Г.Н. Платино-железометальные руды в интрузивных траппах Сибирской платформы // Геология и геофизика, 1999, т. 40, № 2, с. 162–174.

Рябов В.В., Симонов О.Н., Снисар С.Г. Фтор и хлор в апатитах, слюдах и амфиболах расслоенных трапповых интрузий Сибирской платформы // Геология и геофизика, 2018, № 4, с. 453–466.

Угольная база России. Т. IV. Угольные бассейны и месторождения Восточной Сибири (Тунгусский и Таймырский бассейны, месторождения Забайкалья). Череповский В.Ф. (гл. ред.). Москва, ЗАО Геоинформмарк, 2001, 493 с.

Слободской Р.М. Элементоорганические соединения в магматогенных и рудообразующих процессах. Новосибирск, Наука, 1981, 134 с.

Слодкевич В.В. Параморфозы графита по алмазу // ЗВМО. 1982, вып.1, ч. 111, с. 13–33.

Фарфель Л.С. Прогнозирование рудных месторождений. Москва, Недра, 1988, 150

Ryabov V.V., Lapkovsky A.A. Native iron(-platinum) ores from the Siberian Platform trap intrusions» // Australian Journal of Earth Sciences, 2010, N 57, p. 707–730.

c.

Ryabov V.V. and Ponomarchuk V.A. The role of hydrocarbons in formation of PGE deposits in traps of the Siberian platform / 12th International Platinum Symposium. Yekaterinburg. Russia. Abstract. Session 3, 2014, p. 115–116.

Работа выполнена по государственному заданию ИГМ СО РАН.

Подписи к рисункам

к статье Рябова В.В. «Взаимодействие базальтового расплава с ксенолитами каменного угля в трапповой интрузии горы Озёрной, Сибирская платформа».

Рис. 1. Породы участка магматогенной брекчии в габбродолеритах интрузии горы Озёрной.

а,**б** – зона контакта ксенолита графита с плагиоклазитом в трещинах отдельности (верхняя часть снимка) и троктолита (нижняя часть снимка) с включением мелкозернистого плагиоклазита в битумном цементе (слева внизу) и обособления крупнозернистого плагиоклазита (в центре); в – контактовая зона участка богатой битумной вкрапленности плагиофировом габбродолерите (верхняя (чёрное) в часть снимка) И плагиоклазсодержащего оливинита (нижняя часть снимка); **г-**м миаролитовые габбродолериты: в миаролах - оливин, в обрамлении и в центре миарол - битум (чёрное), **3**, *и*, *м* - ник. +, остальные без ник., *е*, *л*, *м* – ув. 80Х, остальные - 20-40Х. Пояснения в тексте.

Bi – биотит, Bt – битум, Chl – хлорит, Cpx – клинопироксен, GrC – графитизированный уголь, Ol – оливин, Pl – плагиоклаз.

Рис. 2. Породы экзоконтакта магматогенной брекчии (*а*,*б*,), гомеогенное включение (*в*) и некоторые экзотические минеральные фазы (*г*-*m*) на околоксенолитовом участке.

а, *б* – миндалекаменный габбродолерит, в миндалинах биотит и хлорит, (*a* – без ник., *б* – ник.+, ув. 20Х); *в* – контактовая зона афанита (справа вверху) и мелкозернистого габбродолерита (слева внизу); *г* - обломок графитизированного угля (GrC) в обрамлении вкрапленников самородного железа, *д* - фрагмент рис. 2*г*; *е* - участок богатой вкрапленности самородного железа (Fe) с наростами кристаллов «кубического» графита (Gr) на силикатную породу; *ж* – фрагмент рис. 2*г*; *з*, *u* – фрагменты рис. 2*ж*, кристаллы «кубического» графита (Gr) в самородном железе; *к*-*m* - вкрапленность рудных фаз в троктолитовых габбродолеритах (съёмки на электронном микроскопе, изображения в обратно-рассеянных электронах).

Ag – самородное серебро; **Aw** – аваруит, **Bi** – биотит, **Coh** – когенит, **Co-Pn** – кобальтпентландит, **Co-Tn** – кобальт-тэнит, **Gr** – «кубический» графит, **GrC** – графитизированный уголь, **Mgt** – магнетит, **Ns** – ниснит, **NN** - неидентифицированная фаза, **Hz** – хизлевудит, **Ol** – оливин, **Orc** – орселит, **Org** – орегонит, **Pn** – пентландит, **Tn** – тэнит, **Fa** – фаялит, **Fe** –самородное железо.

к − 1-Orc, 2-(Pd,Au,Ni,Fe)_{2,5}(As,Sb), 3-Org, 4-Fa₉₂; *n* − 1-Hz, 2-3 -Ns, 4-Co-P_n, 5-Hz, 6- Co-P_n; *m* − 1-2 (Ni,Fe)₂(S,Sn,Ge)-фаза; *н* − 1-Aw, 2-Fa₈₆, 3-Gr, 4-Hz, 5-Bi (NiO 3,4мас.%; Cl 3,5 мас. %), 6-Pn, черное − графит, *o* − 1-Tn, 2- NN, 3-Bi (*f*=80 ат.%, NiO 1,7 мас.%, Cl 4,6 мас.%); *n* − 1-Co-Pn, 2- Orc (Ge 5,8 мас.%) 3-Hz, 4-NN, 5-Fa₉₂, 6-NN; *p* − 1-4-Orc (Ge 1,5-4 мас.%, Sb 1,5 мас.%, 5-Fa₉₄; *c* − 1-Orc (Ge 6,2 мас.%, Sb 1,4 мас.%), 2-3-Hz, 4-Aw (Ge 8 мас.%, As 9 мас.%, Sb 1,5 мас.%), 5-Fa₈₇, 6-NN. На снимках 2к − 2р чёрные зёрна − графит. В скобках некоторых минеральных фаз указаны содержание характерных элементов-примесей.

Рис. 3. Диаграммы зависимости (Ge, As, Sb, S, Sn) - Ni в рудных минералах из магматогенной брекчии в габбродолеритах интрузии г. Озёрная (содержание в мас.%).

Табл. 2.

№№ Обр.	O3-154	O3-156	ОЗ-158гд	ОЗ-158кс
Pt	0,33	0,1	0,038	0,06
Pd	0,25	0,09	0,98	0,13
Rh	0,021	0,006	0,092	0,005
Ru	0,06	0,02	0,027	0,018
Au	0,08	0,007	0,041	0,026
Ag	0,06	0,01	0,09	0,1
Cu	593	474	185	250
Ni	2100	700	2950	278
Со	569	291	1065	66
Pb	-	-	27	8
Zn	95	61	133	88
Cr	96	80	160	284
V	322	209	265	875
As	71	16	24	10

Результаты атомно-абсорбционного анализа пород магматогенной брекчии в габбродолеритах интрузии горы Озёрной (содержание в г/т)

Примечание

Обр. О3-154, О3-156, О3-158гд – брекчия, О3-158кс – гомеогенное включение.

Анализы проводились в ЦКБ многоэлементных и изотопных исследований СО РАН. Аналитики В.Г. Цимбалист, В.Н. Ильина

Табл. 2.

№№ Обр.	O3-154	O3-156	ОЗ-158гд	ОЗ-158кс
Pt	0,33	0,1	0,038	0,06
Pd	0,25	0,09	0,98	0,13
Rh	0,021	0,006	0,092	0,005
Ru	0,06	0,02	0,027	0,018
Au	0,08	0,007	0,041	0,026
Ag	0,06	0,01	0,09	0,1
Cu	593	474	185	250
Ni	2100	700	2950	278
Со	569	291	1065	66
Pb	-	-	27	8
Zn	95	61	133	88
Cr	96	80	160	284
V	322	209	265	875
As	71	16	24	10

Результаты атомно-абсорбционного анализа пород магматогенной брекчии в габбродолеритах интрузии горы Озёрной (содержание в г/т)

Примечание

Обр. О3-154, О3-156, О3-158гд – брекчия, О3-158кс – гомеогенное включение.

Анализы проводились в ЦКБ многоэлементных и изотопных исследований СО РАН. Аналитики В.Г. Цимбалист, В.Н. Ильина

Рисунок 1а

Рисунок 2а

20µm ¹ Электронное изображение 1

2c

Рисунок За

