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С целью уменьшения объема вычислений при численном решении задач нелинейной ди-
намики оболочек с применением пошаговых процедур интегрирования по времени пред-
лагается использовать криволинейный треугольный конечный элемент с малым числом
степеней свободы. Компактность конечно-элементной формулировки достигается пу-
тем применения инвариантов тензоров деформаций. При этом используются натураль-
ные компоненты деформаций, которые определяются в направлениях трех координат-
ных линий, параллельных сторонам элемента. Для оценки возможностей предложенной
конечно-элементной модели приведены решения, описывающие большие перемещения и
углы поворота, а также динамическую потерю устойчивости.

Ключевые слова: оболочки, нелинейная динамика, геометрическая нелинейность,
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Введение. Тонкостенные оболочечные конструкции, применяемые в различных об-
ластях техники, подвергаются нагрузкам, быстро изменяющимся во времени. К числу

таких нагрузок относятся ветровые и сейсмические воздействия, взрывная ударная волна,
тепловой удар и др. Для корректной оценки реакции оболочек на внешнее динамическое
воздействие требуется применение методов анализа, основанных на интегрировании урав-
нений движения с учетом нелинейного характера деформирования.

Прогресс в решении задач нелинейной динамики пластин и оболочек достигнут при

использовании численных процедур, среди которых важную роль играет метод конечных
элементов. В ряде работ предложены различные формулировки конечных элементов для
анализа динамики оболочек произвольной формы с учетом геометрической нелинейности

деформирования.
В [1] разработан конечный элемент двоякой кривизны с 48 степенями свободы для

расчета оболочек, удовлетворяющих гипотезам Кирхгофа — Лява. Элементы, основанные
на неклассических теориях, учитывающих деформацию поперечного сдвига в различных
приближениях, предложены в работах [2–6], основанных на предположении об умеренно
больших прогибах, сравнимых с толщиной оболочки, и малых углах поворота. В этом

случае применимы деформационные соотношения, аналогичные принятым в нелинейной
теории пластин Кармана.

Для снятия ограничений, налагаемых на величину углов поворота, использовались
различные подходы к описанию кинематики конечных поворотов в трехмерном простран-
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стве. Один из таких подходов основан на модели вырожденного упругого тела, в соответ-
ствии с которой конечно-элементные соотношения выводятся из общих уравнений трех-
мерного упругого тела с использованием кинематических и силовых гипотез, реализуе-
мых путем выбора соответствующих функций форм. Различные варианты вырожденных
элементов предложены в [7–9]. Преимуществом элементов такого типа является просто-
та формулировки и компьютерной реализации, а также возможность комбинирования их
с элементами трехмерного тела. Однако их применение приводит к значительным вычис-
лительным затратам, связанным с большим числом степеней свободы.

Альтернативой вырожденным элементам являются подходы, основанные на теориях
оболочек. В [10] предложен треугольный элемент тонкой оболочки, основанной на гипоте-
зах Кирхгофа — Лява. В [11–13] разработаны плоские треугольные элементы с 18 степе-
нями свободы для анализа статики и динамики слоистых композитных оболочек с учетом

поперечного сдвига.

Ряд работ посвящен построению геометрически точных конечных элементов, в ко-
торых отсчетная поверхность описывается аналитическими функциями, а коэффициенты
первой и второй фундаментальных форм вычисляются точно в узловых точках. В [14, 15]
разработаны шестиузловые треугольные элементы с шестью степенями свободы в уз-
ле. Формулировка четырехугольных изопараметрических элементов приведена в [16, 17].
В [18–20] рассмотрены элементы, основанные на семипараметрической модели оболочки
с учетом поперечного обжатия.

Известны модели, не требующие введения вращательных степеней свободы. Напри-
мер, в [21, 22] предложен треугольный трехузловой элемент с тремя поступательными
степенями свободы в каждом узле. Поле постоянных искривлений в пределах элемента
определяется через узловые перемещения соседних трех элементов. Использование данной
модели позволяет значительно сократить общее число степеней свободы. Недостатками
модели являются чувствительность результатов вычислений к качеству сетки и примени-
мость только для достаточно тонких оболочек с малой изгибной жесткостью [23].

Следует отметить также изогеометрический подход к анализу конструкций, в кото-
ром в качестве базисных функций используются неоднородные рациональные B-сплайны,
применяемые в современных системах автоматизированного проектирования. Элементы
оболочек, построенные с использованием таких базисных функций, рассмотрены в [24, 25].

Таким образом, построение эффективных вычислительных схем для решения задач
нелинейной динамики оболочек остается актуальной проблемой. Применение пошаговых
процедур интегрирования уравнений движения по времени приводит к большому объему

вычислений, так как на каждом временном шаге требуется применять итерационные мето-
ды определения деформированных конфигураций. Даже при современном уровне развития
вычислительной техники анализ динамического поведения моделей с большим числом сте-
пеней свободы требует значительных временных затрат.

В настоящей работе рассматривается возможность уменьшения объема вычислений

путем использования экономичной конечно-элементной модели. Предлагается треуголь-
ный конечный элемент с 15 степенями свободы, для построения которого используются
инварианты тензора деформаций.

1. Кинематика конечного элемента. Рассмотрим тонкую упругую оболочку в де-
картовой системе координат x1, x2, x3. В качестве поверхности отсчета используем сре-
динную поверхность. Выберем на срединной поверхности оболочки три точки с радиус-
векторами ri и построим в каждой из них единичные векторы нормалей di (i = 1, 2, 3).
Совокупность трех точек (узлов) с присоединенными векторами будем называть кинема-
тической группой оболочки [26]. Конфигурация группы однозначно определяется девятью
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величинами вида

ei = |rk − rj |, ψ2k = dk(rk − rj), ψ1j = dj(rk − rj). (1)

Здесь и далее индексы i, j, k подчиняются правилу циклической перестановки. Указанные
величины определяются взаимным расположением узлов и взаимной ориентацией присо-
единенных векторов.

В общем случае при деформировании оболочки кинематическая группа совершает

сложное движение, которое можно разложить на перемещения твердого тела и деформа-
цию, приводящую к изменению взаимного положения узлов и присоединенных векторов.
Конфигурация деформированной кинематической группы определяется по формулам, ана-
логичным (1). При движении группы как твердого тела значения величин (1) сохраняются.

Треугольный конечный элемент называется ассоциированным с кинематической груп-
пой, если деформации в его пределах являются непрерывными функциями деформаций
группы. За счет ассоциирования выполняется необходимый критерий сходимости конечно-
элементного решения: деформации элемента точно обращаются в нуль при его движении
как твердого тела.

Будем полагать, что в процессе деформирования оболочки узловые векторы сохраня-
ют единичную длину, но необязательно остаются нормальными к деформированной по-
верхности оболочки. Возможные состояния элемента определяются 15 степенями свободы
кинематической группы, которые включают три поступательных перемещения узла и два
угла поворота узлового присоединенного вектора.

2. Инварианты тензора деформаций. Рассмотрим треугольный элемент поверх-
ности с вершинами i, j, k, лежащими на срединной поверхности оболочки. В качестве коор-
динатной плоскости используем секущую плоскость, проходящую через вершины (узлы)
i, j, k на срединной поверхности. Если узлы расположены близко друг к другу, то элемент
поверхности будет пологим относительно плоскости и в его пределах метрические свой-
ства поверхности и плоскости можно считать одинаковыми. Введем локальную декартову
систему координат ξ1, ξ2 на секущей плоскости (рис. 1).

Для описания деформированного состояния элемента оболочки определим тензор де-
формации εmn при плоском напряженном состоянии, тензор искривлений срединной по-
верхности κmn и тензор Γmn = γm3γn3, где γm3 — деформации поперечного сдвига

(m,n = 1, 2). Введем общее обозначение umn для указанных тензоров и запишем инва-
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Рис. 1. Конечный элемент оболочки (а) и его проекция на секущую плос-
кость (б)
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рианты тензора umn в декартовых координатах

Iu = u11 + u22, Iuu = u11u22 − u2
12. (2)

При выводе деформационных соотношений для треугольного элемента выполняется

переход к новой системе координат, образованной тремя линиями, направленными вдоль
сторон треугольника. Натуральные компоненты тензора ui (i = 1, 2, 3), определяемые для
указанных трех направлений, связаны с декартовыми компонентами линейными соотно-
шениями (по i суммирование не проводится)

ui = λmiλniumn,

где λmi — направляющие косинусы единичного вектора, направленного от узла j к уз-
лу k; по повторяющимся индексам проводится суммирование, за исключением случаев,
оговоренных особо.

В [27] показано, что инварианты (2) выражаются через натуральные компоненты тен-
зора в виде

Iu = 2(aai − 2a2
i )ui, Iuu = (aiaj − 2βij)uiuj (i, j = 1, 2, 3),

ai =
l2i√
∆
, a =

lili√
∆
, ∆ = (lili)

2 − 2l2i l
2
i , βij =

{
a2

i , i = j,
0, i 6= j,

(3)

где li — длина стороны элемента, противолежащей узлу i.
3. Потенциальная и кинетическая энергия. Выражение для потенциальной энер-

гии деформации элемента оболочки имеет вид

Πe =
1

2

∫
Ae

(
B1I

2
ε − 2B2Iεε +D1I

2
κ − 2D2Iκκ + CΓIΓ

)
dAe, (4)

где

(B1, D1) =

h/2∫
−h/2

E

1− ν2
(1, z2) dz, (B2, D2) =

h/2∫
−h/2

E

1 + ν
(1, z2) dz, CΓ = ks

h/2∫
−h/2

Gdz.

Здесь Ae — площадь элемента; h — толщина оболочки; z — координата, отсчитывае-
мая по нормали к срединной поверхности оболочки; E — модуль упругости; ν — коэф-
фициент Пуассона; G — модуль сдвига; ks — коэффициент поперечного сдвига, учиты-
вающий неравномерность распределения касательных напряжений по толщине оболочки;
Iε, . . . , IΓ — инварианты, определенные формулами (2), (3).

Учитывая пологость элемента относительно плоскости, проходящей через его узлы,
для натуральных компонент тензоров деформации примем следующие аппроксимации (по
индексам i, j, k суммирование не проводится):

εi =
1

2
(l−2

i l∗2i − 1); (5)

κi =
1

li
(ϑ2k − ϑ1j) +

1

li
(ϑ2k + ϑ1j)

ηi1

li
(Lk − Lj), γi = ηi2(ϑ2k + ϑ1j), (6)

где параметры εi, ϑ2k, . . ., описывающие деформации кинематической группы элемента,
вычисляются по формулам

li = ei, ϑ2k =
1

li
(ψ∗

2k − ψ2k), ϑ1j =
1

li
(ψ∗

1j − ψ1j),
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ηi1 =
3

1 + ηi3
, ηi2 =

1

6
ηi1ηi3, ηi3 =

12D1

CΓl
2
i

.

Здесь L1, L2, L3 — L-координаты [28]; индексом “∗” отмечены величины, соответствующие
деформированному состоянию элемента. Величины e∗i , ψ

∗
2k, . . . определяются соотношени-

ями, аналогичными (1).
Соотношения (6) представляют собой точное решение линейной задачи об изгибе бал-

ки Тимошенко при заданных углах поворота концевых сечений. Заметим, что соотноше-
ния (5), (6) обеспечивают выполнение условия постоянства деформаций в элементе.

Подставляя (5), (6) в (4), получаем выражение для потенциальной энергии конечного
элемента

Πe =
1

2
uтKu, u = (ε1, ε2, ε3, ϑ23, ϑ12, ϑ21, ϑ13, ϑ22, ϑ11)

т,

где u — вектор, включающий деформации кинематической группы элемента; K — матри-
ца жесткости, зависящая от упругих свойств материала и начальной геометрии элемента.
Матрица жесткости вычисляется по формулам

K =

(
Kε 0
0 Kκ +KΓ

)
,

Kε = Ae(B1ττ т − 2B2(µµт − β)), Kκ =

∫
Ae

CтQC dAe, KΓ = W тSW,

Q = D1ττ т − 2D2(µµт − β),

µ =

 a1

a2

a3

 , τ = 2

 aa1 − 2a2
1

aa2 − 2a2
2

aa3 − 2a2
3

 , S = CΓAe

 τ1 0 0
0 τ2 0
0 0 τ3

 ,

где отличные от нуля компоненты матриц W , C имеют вид

W11 = W12 = η12, W23 = W24 = η22, W35 = W36 = η32,

C11 = (1 + η11(L3 − L2))/l1, C12 = −(1 + η11(L2 − L3))/l1,

C23 = (1 + η21(L1 − L3))/l2, C24 = −(1 + η21(L3 − L1))/l2,

C35 = (1 + η31(L2 − L1))/l3, C36 = −(1 + η31(L1 − L2))/l3.

Многочлены второго порядка, входящие в выражение для Kκ, интегрируются точно
по трем точкам с использованием кубатурных формул Гаусса [28].

Для формулировки уравнений, необходимых для итерационного решения нелинейных
задач, важную роль играют коэффициенты первой и второй вариаций энергии деформации

δΠe = gтe δqe, δ2Πe = δqтe He δqe,

где ge, He — градиент и гессиан потенциальной энергии элемента соответственно; δqe —
вектор вариаций независимых переменных, определяемый степенями свободы кинемати-
ческой группы:

qe = (qт1 , q
т
2 , q

т
3 )т, qi = (x∗1i, x

∗
2i, x

∗
3i, ω1i, ω2i)

т, i = 1, 2, 3.

При вычислении кинетической энергии треугольного конечного элемента полагаем,
что масса элемента сосредоточена в его узлах, причем вклад массы в каждый узел пропор-
ционален соответствующему углу треугольника. Инерция вращения поперечных волокон
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относительно осей касательных к срединной поверхности не учитывается. В результате
кинетическая энергия элемента равна

Te =
1

2
q̇eMeq̇e,

Me = diag (µт1 ,µ
т
2 ,µ

т
3), µi = ρhAe(αi/π)(1, 1, 1, 0, 0)т,

гдеMe — диагональная матрица масс; αi — угол при узле i; точка обозначает производную
по времени; ρ — плотность материала.

4. Интегрирование уравнений движения. Нелинейные уравнения движения

конечно-элементной модели оболочки запишем в матричном виде

M q̈ + Cq̇ + g = 0, (7)

гдеM , C — матрица масс и матрица демпфирования соответственно; g — градиент полной

потенциальной энергии оболочки, зависящий от ее текущей конфигурации.
Для интегрирования уравнений (7) движения применим неявную схему Ньюмарка.

Временной интервал разбивается на конечные интервалы длиной ∆t. В момент време-
ни t+ ∆t решение системы находится с помощью итерационной процедуры Ньютона —
Рафсона по схеме

(Ht+∆t
(p)

+ a1M + a4C) δqt+∆t
(p+1)

= −gt+∆t
(p)

− (a1M + a4C)(qt+∆t
(p)

− qt) +

+(a2M − a5C)q̇t + (a3M − a6C)q̈t; (8)

a1 =
1

α∆t2
, a2 =

1

α∆t
, a3 =

1− 2α

2α
, a4 =

β

α∆t
, a5 = 1− α

β
, a6 =

(
1− β

2α

)
∆t,

где α = 1/4; β = 1/2 [29].
На каждой итерации с использованием решения системы (8) уточняется положение

узлов и присоединенных векторов по формулам

r
∗(p+1)
n = r∗pn + δr∗pn ,

d
∗(p+1)
n = cp1d

∗p
n + cp2(t

∗p
1n δω

p
1n + t∗p2n δω

p
2n),

t
∗(p+1)
mn = t∗pmn − δωp

mn(cp2d
∗p
n + cp3(t

∗p
1n δω

p
1n + t∗p2n δω

p
2n)),

δωp
n = ((δωp

1n)2 + (δωp
2n)2)1/2, cp1 = cos δωp

n, cp2 =
sin δωp

n

δωp
n

, cp3 =
1− cos δωp

n

(δωp
n)2

,

где p — номер итерации; n — номер узла; t∗1n, t∗2n — вспомогательные единичные векторы,
составляющие с присоединенным вектором d∗

n ортогональную тройку векторов.
Определив решение qt+∆t с заданной точностью, скорости и ускорения на шаге t+∆t

вычисляем по формулам

q̈t+∆t = a1q
t+∆t − a1q

t − a2q̇
t − a3q̈

t,

q̇t+∆t = a4q
t+∆t − a4q

t + a5q̇
t + a6q̈

t.

5. Результаты расчетов. Построенный треугольный конечный элемент с 15 степе-
нями свободы используется ниже при решении ряда задач нелинейного деформирования и

устойчивости упругих оболочек.
5.1. Колебания физического маятника. Рассмотрим свободные колебания физического

маятника в виде подвешенной за конец балки длиной l = 1 м, шириной b = l/4 и толщиной
h = l/100. В начальный момент времени балка отклоняется на угол θ0 = 0,999π отно-
сительно положения статического равновесия и затем совершает колебания в поле сил
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Рис. 2. Схема физического маятника и зависимости перемещения конца маят-
ника от времени:
сплошные линии — аналитическое решение, пунктирные — численное решение для

сетки размером 2× 4, штриховые — численное решение для сетки размером 2× 8; 1 —
uy, 2 — uz

тяжести с ускорением свободного падения g = 10 м/с2. Здесь и далее в расчетах демпфи-
рование не учитывается.

На рис. 2 приведено численное решение задачи, полученное при ∆t = 0,0044 c. На
каждом шаге по времени требуются 2–4 итерации для нахождения решения. Полученные
результаты хорошо согласуются с точным аналитическим решением для жесткого маят-
ника

uy/l = 2k
(√

1− k2 cd2ωt cdωt− k′
)
, uz/l = 2k2(1− cd2ωt),

где uy, uz — перемещения свободного конца балки в горизонтальном и вертикальном на-

правлениях соответственно; ω =
√

3g/(2l); k = sin θ0/2 — модуль эллиптического инте-

грала; k′ =
√

1− k2 — дополнительный модуль; cdωt — эллиптическая функция Якоби.
Согласно точному решению период колебаний составляет T = 4K/ω = 8,0997 c, где K —
полный эллиптический интеграл первого рода.

Заметная погрешность конечно-элементного решения, полученного при использовании
грубой сетки размером 2× 4, объясняется несогласованностью матрицы масс. При увели-
чении числа элементов наблюдается быстрая сходимость к аналитическому решению.

5.2. Движение тонкостенного кольца. Рассмотрим задачу о сложном движении

короткой цилиндрической оболочки, вызванном импульсной нагрузкой (см., например,
[9, 30]). Примем следующие данные: радиус R = 7,5 м, длина L = 3 м, толщина стен-
ки h = 0,02 м, модуль Юнга E = 2 · 108 Па, коэффициент Пуассона ν = 0,25, плотность
материала ρ = 1 кг/м3. Сетка конечных элементов получена разбиением оболочки на 3
и 32 участка в осевом и окружном направлениях соответственно. Общее число степеней
свободы модели равно 640. Сетка и схема нагружения показаны на рис. 3. В каждом от-
меченном узле действует сила p(t), изменяющаяся по закону

p(t) =


10t, 0 < t < 0,5,

10(1− t), 0,5 < t < 1,
0 t > 1.

В начальный момент времени перемещения, скорости и ускорения равны нулю. Шаг ин-
тегрирования по времени принят равным 0,005 с.

В результате нагружения оболочка совершает сложное движение, включающее по-
ступательное и вращательное движения, на которые налагаются свободные колебания с
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Рис. 3. Схема нагружения кольца и конечно-элементная сетка
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Рис. 4. Перемещения точки A кольца:
сплошные линии — решение [9], штриховые — численное решение; 1 — ux, 2 — uy,
3 — uz

конечной амплитудой. На рис. 4 приведены зависимости перемещений точки A(R; 0; 0) от
времени. Конфигурации оболочки с интервалом 2 с показаны на рис. 5.

Зависимости кинетической, потенциальной и полной энергии оболочки от времени
представлены на рис. 6. После снятия импульсной нагрузки центр масс оболочки движется
поступательно вдоль оси Ox с постоянной скоростью 7,08 м/с. При t > 1 c значение
полной энергии остается постоянным и равным 432 Н ·м, что согласуется с теоретическим
значением 445,2 Н ·м [30].

5.3. Устойчивость эйлерова стержня. Исследуем поведение прямолинейного шар-
нирно опертого стержня при осевом сжатии. Известно, что при статической нагрузке,
превышающей критическое значение Pcr = (π/l)2EI (эйлерова нагрузка), стержень пере-
ходит в устойчивое изогнутое состояние. При увеличении нагрузки в закритической об-



С. В. Левяков 187

y/R

x/R5 100

0

_1

1
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Рис. 6. Зависимости кинетической T (1), потенциальной Π (2) и полной T+Π (3)
энергии кольца от времени

ласти деформирования опертые концы начинают сближаться, и при достижении значения
P ≈ 2,1833Pcr опоры совмещаются. В этом случае изогнутый стержень получает возмож-
ность свободно вращаться как твердое тело вокруг точки совмещения опор. При дальней-
шем увеличении внешней силы происходит прощелкивание (вторичная потеря устойчиво-
сти), в результате чего стержень поворачивается на угол, равный 180◦, выпрямляется и
занимает новое устойчивое состояние равновесия при растягивающей силе. Решение этой
задачи в статической постановке рассматривалось в работах [31–33]. Начальная стадия
выпучивания сжимаемого стержня с учетом сил инерции изучалась в [34, 35].

Исследуем динамическую задачу устойчивости на примере стержня длиной l с узким
прямоугольным сечением с размерами b = l/40, h = l/200. Для характеристик материала
примем следующие значения: E = 2,077 · 1011 Па, ν = 0, ρ = 8166 кг/м3. Нагрузка возрас-
тает по линейному закону P = Pcrt/tcr, где tcr — момент времени (задаваемый параметр),
в который достигается критическое значение Pcr.

Расчетная схема для стержня показана на рис. 7. Используется равномерная сетка
размером 2× 40. При x = l перемещения узлов равны нулю, а узлы, к которым приложена
сжимающая сила P , могут смещаться только в направлении оси Ox. Для инициирования
потери устойчивости вводится геометрическая неправильность вида

w0(x) = ε1 sin
πx

l
+ ε2

(
1− x

l

)
,

где ε1 = h/100, ε2 = l/100 — амплитуды неправильностей, определяющие эксцентрическое
расположение опор и отклонение оси стержня от прямолинейной формы соответственно.

На рис. 8 показаны диаграммы деформирования стержня для “быстрого” (tcr = 0,25 c)
и “медленного” (tcr = 4 c) режимов нагружения. В обоих случаях интервал 0 < t < 2tcr
разбивался на 16 000 шагов для интегрирования по времени. Из рис. 8 следует, что вы-
пучивание стержня при “быстром” нагружении происходит при нагрузке, значительно
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Рис. 8. Кинематическая схема и зависимости нагрузки от осевого перемеще-
ния (а) и прогиба (б) сжатого стержня:
1 — tcr = 0,25 с, 2 — tcr = 4 c

превышающей значение Pcr. Этот эффект запаздывания объясняется влиянием сил инер-
ции.

Конфигурации стержня в различные моменты времени показаны на рис. 9. При сбли-
жении эксцентрически расположенных опор искривленный стержень начинает поворачи-
ваться как твердое тело по часовой стрелке. После прохождения левого конца стержня
через неподвижную опору изогнутый стержень мгновенно поворачивается и переходит в

растянутое состояние. При этом возбуждаются колебания с конечной амплитудой, срав-
нимой с длиной стержня.

5.4. Устойчивость цилиндрической оболочки при радиальном сжатии. Исследуем
нелинейное деформирование и потерю устойчивости цилиндрической оболочки при ра-
диальном сжатии. Нагружение осуществляется путем задания радиальных смещений w
четырех точек, симметрично расположенных в среднем поперечном сечении оболочки.
Примем линейный закон w = vt, где v — постоянная скорость нагружения. Материал
имеет следующие характеристики: E = 2 · 1011 Па, ν = 0, ρ = 7800 кг/м3. Использована
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Рис. 9. Формы стержня при быстром нагружении сжимающей силой (tcr =
0,25 c):
1 — t = 0,350 с, 2 — t = 0,375 с, 3 — t = 0,400 с, 4 — t = 0,425 с, 5 — t = 0,450 с, 6 —
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Рис. 10. Схема нагружения и диаграммы деформирования цилиндрической обо-
лочки при радиальном сжатии со скоростью v = 0,05 c (а) и v = 0,5 c (б):
1 — Q, 2 — T ; сплошные линии — решение динамической задачи, штриховые — ре-
шение статической задачи, точки — точки бифуркации для статического решения

сетка, полученная путем разбиения оболочки на 12 и 72 элемента по меридиональной и
окружной координатам соответственно. Для инициирования выпучивания оболочки в че-
тырех точках, расположенных между точками кинематического нагружения, приложены
знакочередующиеся малые силы, направленные вдоль оси.

На рис. 10 показана зависимость параметра нагружения Q = PR2/(DL) (P — ра-
диальная сила в точке нагружения) и кинетической энергии оболочки T от заданного

прогиба w. Решение статической задачи (штриховые линии) показывает, что на кри-
вой деформирования имеется точка бифуркации, при достижении которой возможен пе-
реход к несимметричным формам равновесия оболочки с четко выраженной депланаци-
ей поперечных сечений. В [36] установлено, что критическое значение параметра нагру-
жения равно Qcr = 10,251. В случае динамического нагружения с относительно малой
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Рис. 11. Деформированные состояния оболочки при v = 0,05 c:
а — t = 0,1 c, б — t = 0,25 c, в — t = 0,5 c, г — t = 0,75 c

скоростью v = 0,05 c оболочка теряет устойчивость при большем значении параметра
Q = 11,0, которое определено как первый локальный максимум на кривой деформиро-
вания при w/R = 0,129, t = 0,258 c. После прохождения указанного максимума проис-
ходит переход к несимметричным конфигурациям. Увеличение скорости нагружения до
v = 0,5 c приводит к интенсивным колебаниям, которые затрудняют анализ устойчиво-
сти симметричных форм равновесия с использованием диаграммы нагрузка — прогиб.
Поэтому в качестве критерия динамической потери устойчивости принят первый макси-
мум кинетической энергии оболочки как функции времени. Показано, что оболочка теряет
устойчивость при w/R = 0,226, t = 0,0452 c. Таким образом, происходит значительное
запаздывание потери устойчивости, вызванное влиянием сил инерции.

На рис. 11 показаны деформированные состояния оболочки в различные моменты вре-
мени.

Заключение. Предложен криволинейный треугольный трехузловой конечный эле-
мент для исследования нелинейной динамики упругих оболочек. Элемент обладает мень-
шим по сравнению с большинством известных аналогов числом степеней свободы, которые
включают три перемещения и два угла поворота нормалей в каждом узле (всего 15 сте-
пеней свободы). Особенностью подготовки расчетной модели оболочки является задание

не только координат узлов, но и направляющих косинусов узловых нормалей к срединной
поверхности оболочки.

Компактность конечно-элементной формулировки достигается за счет использования
инвариантов, которые выражаются через три нормальные компоненты деформаций в на-
правлении сторон элемента. Использование инвариантов позволяет избежать громозд-
ких матричных преобразований координат и упростить получение разрешающей системы

уравнений для определения деформированных конфигураций конечно-элементной модели
оболочки.

Верификация конечного элемента подтверждает его эффективность для исследова-
ния нелинейного деформирования и устойчивости упругих оболочек при больших переме-
щениях и углах поворота. Анализ результатов решения рассмотренных тестовых задач
свидетельствует о важности учета инерционных эффектов при исследовании нелинейного

деформирования и устойчивости оболочек в условиях динамического нагружения.
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