УДК 536.423

СКОРОСТЬ ИСПАРЕНИЯ СО СВОБОДНОЙ ПОВЕРХНОСТИ НАГРЕТОЙ ЖИДКОСТИ

М. Орвос, В. Сзабо, Т. Пус

Будапештский университет технологии и экономики, H-1111 Будапешт, Венгрия E-mails: orvos@mail.bme.hu, szabo.viktor@mail.bme.hu, poos@mail.bme.hu

Разработаны метод измерения и экспериментальная установка для определения интенсивности испарения со свободной поверхности воды, позволяющие изменять скорость движения окружающего воздуха и температуру воды, регистрировать массу и температуру воды, а также температуру, давление и влажность окружающего воздуха как функции времени. На основе полученных экспериментальных данных рассчитана скорость испарения для случаев свободной и вынужденной конвекции.

Ключевые слова: теплообмен, массообмен, испарение, скорость испарения.

DOI: 10.15372/PMTF20160619

Введение. Испарение со свободной поверхности жидкости, имеющее место в повседневной жизни и промышленности (резервуары под открытым небом, водохранилища, бассейны, заполненные жидкостью бассейны-хранилища тепловыделяющих сборок на атомных электростанциях), может происходить вследствие естественной или вынужденной конвекции. Интенсивность испарения может различаться в случаях неподвижных и колеблющихся поверхностей. Методы измерения поверхностного испарения исследовались в ряде работ, результаты которых основаны на экспериментальных данных, полученных при различных климатических условиях на свободных или капиллярных поверхностях. С помощью регрессионного анализа экспериментальных данных получены соотношения для описания процесса испарения.

Тепло- и массообмен на свободной поверхности испарения. При контакте свободной поверхности воды с воздухом под воздействием внешних факторов происходит процесс тепло- и массообмена [1, 2]. При диффузии пар с насыщенной поверхности воды переносится в воздух. В зависимости от направления градиента температуры направление теплового потока может совпадать с направлением основного потока воздуха или быть противоположным ему. На рис. 1 показано направление движущей силы под действием разности парциальных давлений для случая нагретой жидкости.

В случае разности температур поверхности воды и ненасыщенного воздуха при испарении с нагретой поверхности плотность теплового потока находим по формуле

$$q_{conv} = \alpha (T_f - T_G), \qquad T_f > T_G, \tag{1}$$

где α — коэффициент теплопереноса; T_f, T_G — температура воды и газа соответственно.

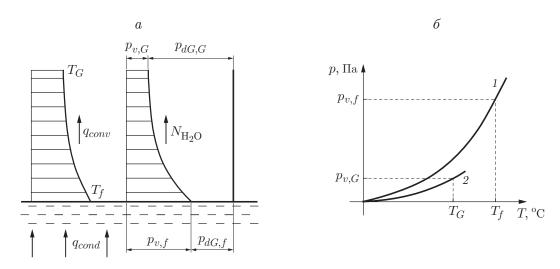


Рис. 1. Направление движущей силы под действием разности парциальных давлений при испарении нагретой жидкости (a) и кривые насыщения (b): $1-\varphi_f=100~\%,~2-\varphi_G$

Скорость молекулярного испарения выражается через коэффициент массообмена k_G , обусловленного градиентом давления, и движущую силу парциального давления [1]:

$$N_{mol} = k_G(p_{v,f} - p_{v,G}). \tag{2}$$

Используя уравнение состояния идеального газа

$$\frac{p_v}{RT} = \frac{m_v}{M_{\rm H_2O}V} = c_v,\tag{3}$$

получаем

$$p_v = c_v RT, (4)$$

где m_v — масса пара; $M_{\rm H_2O}$ — молекулярная масса воды; c_v — концентрация пара; V — объем.

Из уравнений (2), (4) находим скорость молекулярного испарения

$$N_{mol} = k_G RT(c_{v,f} - c_{v,G}) = k_c(c_{v,f} - c_{v,G}), \tag{5}$$

где k_c — коэффициент массообмена, обусловленного градиентом концентрации вещества. Массовый расход испарения равен

$$N_{\text{H}_2\text{O}} = N_{mol} M_{\text{H}_2\text{O}} = k_c M_{\text{H}_2\text{O}} (c_{v,f} - c_{v,G}). \tag{6}$$

Преобразуя уравнение (6) и используя коэффициент испарения и абсолютную влажность, выражение для массового расхода представим в виде

$$N_{\rm H_2O} = k_c M_{\rm H_2O} (c_{v,f} - c_{v,G}) \frac{\rho_G}{\rho_G} = \sigma(Y_f - Y_G),$$
 (7)

где коэффициент испарения равен

$$\sigma = k_c \rho_G, \tag{8}$$

абсолютная влажность в пересчете на сухое вещество равна

$$Y = c_v M_{\rm H_2O}/\rho_G.$$

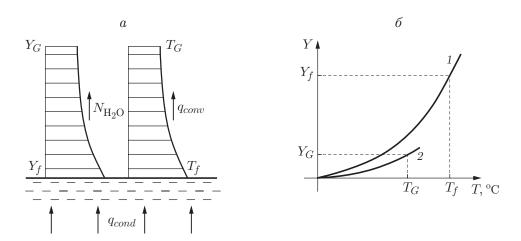


Рис. 2. Направление движущей силы под действием разности влажностей при испарении нагретой жидкости (a) и кривые насыщения (δ) : $1-\varphi_f=100~\%,~2-\varphi_G$

На рис. 2 показано направление движущей силы под действием разности влажностей для случая нагретой жидкости. Парциальное давление пара и абсолютная влажность связаны выражением

$$Y = \frac{M_{\rm H_2O}}{M_G} \frac{\varphi p_{v,sat}}{P - \varphi p_{v,sat}} = \frac{18}{29} \frac{\varphi p_{v,sat}}{P - \varphi p_{v,sat}},$$

где φ — относительная влажность; индекс sat соответствует насыщенному состоянию.

Связь между тепло- и массообменом изучалась в работах [1–3] с использованием различных методов. Поскольку в случае плоской поверхности жидкости сопротивление формы пренебрежимо мало по сравнению с сопротивлением трения, зависимость тепломассопереноса от переноса количества движения можно применить для определения количества испарившейся воды. Основываясь на подобии профилей температуры, концентрации и скорости, можно принять $J_H = J_M$ [1], где J_H — коэффициент пропускания потока тепла; J_M — коэффициент пропускания потока массы.

Используя определения коэффициентов пропускания потоков тепла и массы, получаем

$$J_H = \frac{\text{Nu}}{\text{Re Pr}} \Pr^z = \frac{\text{Sh}}{\text{Re Sc}} \operatorname{Sc}^z = J_M.$$
 (9)

Можно показать, что

$$\frac{\alpha}{k_c \rho c_G} = \left(\frac{\text{Sc}}{\text{Pr}}\right)^z = \text{Le}^z \,. \tag{10}$$

В (9), (10) Sc — число Шмидта; Sh — число Шервуда; Le — число Льюиса. Для системы воздух — вода Le $^z \simeq 1$. С учетом уравнений (8), (10) получаем

$$\frac{\alpha}{k_c \rho} = \frac{\alpha}{\sigma} = c_G. \tag{11}$$

С использованием уравнения (11) находим скорость испарения [1]

$$N_{\rm H_2O} = \frac{\alpha}{c_G} (Y_f - Y_G),$$

где коэффициент теплообмена α можно определить с помощью уравнения $\mathrm{Nu}=f(\mathrm{Re}).$

В работе [4] впервые описана задача испарения и сделан вывод, что интенсивность испарения пропорциональна разности парциальных давлений на поверхности жидкости

 ${
m Taf\pi u \, ua} \, 1$ Значения констант C_1 , C_2 , n в соотношениях между скоростью испарения и парциальным давлением, полученные в работах [5–11]

Источник	Условия эксперимента	C_1	C_2	n
[5]	Плавательный бассейн	0,08870	0,078 15	1,00
[7]	Контейнер	$0,\!15380$	0,068 98	1,00
[8]	Ветряной туннель	0,08380	0,05082	1,00
[9]	Озеро и контейнер	0,10900	0,085 90	1,00
[10]	Контейнер	0,07549	0,033 93	1,00
[11]	Открытый и закрытый бассейны	0,06741	0,051 50	1,00
[6]	Свободная поверхность	$0,\!22530$	0,246 44	0,82
[6]	Поверхность, покрытая увлажненным материалом	0,75810	$0,\!42572$	0,70

и в основном потоке воздуха и скорости потока воздуха. В [5] предложено соотношение, которое в основном применяется для случая испарения с поверхности воды:

$$N_{\rm H_2O} = \frac{(C_1 + C_2 v_G)(p_{sat,f} - \varphi p_{sat,G})}{r_F}$$
 (12)

 $(r_F$ — теплота парообразования). Уравнение (12) выведено для случая течения воздуха над поверхностью воды. Согласно [6] уравнение (12) отличается от уравнения для водоемов, где поверхность воды неподвижна, колебания отсутствуют, что подтверждено в работах [5–13]. В [6, 14] на основе экспериментальных данных показано, что указанное различие обусловлено нелинейной зависимостью между скоростью испарения и парциальным давлением. В работах [5–13] предложена следующая нелинейная зависимость:

$$N_{\rm H_2O} = \frac{(C_1 + C_2 v_G)(p_{sat,f} - \varphi p_{sat,G})^n}{r_F}.$$

Эксперименты по определению скорости испарения проводились на свободных поверхностях воды размером $1,16 \times 1,16$ м, а также на поверхностях, покрытых увлажненным материалом, при воздействии потока воздуха со скоростью $0,1 \div 1,7$ м/с. В табл. 1 приведены значения констант в соотношениях между скоростью испарения и парциальным давлением, полученные при обработке экспериментальных данных в работах [5–11].

В работе [15] рассматривалось испарение со свободной поверхности воды в случае вынужденной конвекции. Сделан вывод, что скорость испарения также зависит от движущей силы, обусловленной разностью температур, и рассмотрены три случая ($T_f > T_G$; $T_{G,dp} < T_f < T_G$; $T_f < T_{G,dp}$). Согласно [15] скорость испарения зависит не только от относительной влажности, температуры окружающего воздуха и температуры воды, но и от размера поверхности, с которой происходит испарение. Зависимость скорости испарения от температуры воды при относительной влажности $\varphi = 45$, 100 %, разности температур $T_f - T_G = 5$ °C и скорости воздуха $v_G = 3$ м/с показана на рис. 3. Также на рис. 3 приведена зависимость скорости испарения от характерного размера поверхности воды при $T_f = 30$ °C, $T_G = 25$ °C, $T_G = 3$ м/с, $T_G = 45$, 100 %, $T_G = 45$, 100 м.

В [15] для определения скорости испарения предложено следующее соотношение:

$$N_{\text{H}_2\text{O}} = (0.00562v_G^{0.8}L^{-0.2} - 0.01529L^{-1})(p_{sat,f} - \varphi p_{sat,G}).$$

В [17] процесс испарения воды вследствие свободной конвекции описан с использованием безразмерных чисел Шервуда и Рэлея. Для случая, когда температура поверхности воды при испарении не менялась, предложено следующее соотношение:

$$Sh = 0.23 \, Sc^{1/3} \, Ra^{0.321}, \tag{13}$$

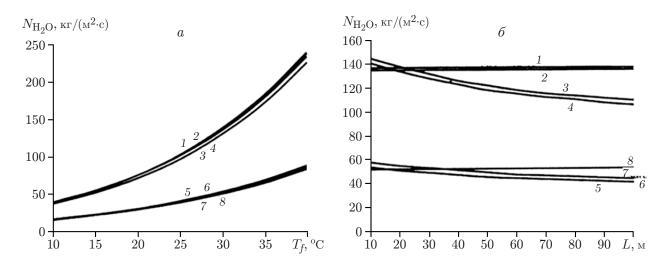


Рис. 3. Зависимости скорости испарения от температуры воды (a) и характерного размера поверхности (b), полученные при различных условиях эксперимента:

$$a$$
 — T_f — T_G = 5 °C, v_G = 3 м/c, δ — T_f = 30 °C, T_G = 25 °C, v_G = 3 м/c; 1–4 — φ = 45 %, 5–8 — φ = 100 %; 1, 5 — данные работы [16], 2, δ — данные работы [13], 3, 7 — данные работы [15], 4, δ — данные работы [12]

где

$$Ra = gL^3\beta_G(T_f - T_G)/(\nu_G a_G),$$

 a_G — температуропроводность газа. Число Рэлея меняется в диапазоне $9.6 \cdot 10^5 < \mathrm{Ra} < 5.7 \cdot 10^8$, температура воды приблизительно равна 43 °C, характерный размер поверхности составляет $152 \div 609$ мм. С использованием уравнения (13) и констант [17] выражение для скорости испарения запишем в виде

$$N_{\rm H_2O} = \frac{D(\rho_{v,f} - \varphi \rho_{v,G})}{L} \cdot 0.23 \cdot (0.6)^{1/3} \left(\frac{g(\rho_f - \rho_G)L^3}{(\rho_f - \rho_G)\nu_G a_G/2} \right)^{0.321}.$$

Для случая плавательных бассейнов большое значение имеют условия процесса испарения. В [6, 11] исследовались процессы испарения с неподвижной и колеблющейся поверхностей. При этом использовалось соотношение [18]

$$N_{\text{H}_2\text{O}} = (25 + 19\nu_G)(Y_f - Y_G). \tag{14}$$

Уравнение (14) в основном используется для расчета скорости испарения в плавательных бассейнах.

В работе [19] предложено соотношение для определения количества воды, испарившейся с невозмущенной поверхности:

$$N_{\rm H_2O} = 35\rho_f(\rho_G - \rho_f)^{1/3}(Y_f - Y_G). \tag{15}$$

Уравнение (15) получено для случая поверхности размером $0.073 \div 425.000 \text{ м}^2$, температуры воды $7 \div 94 \,^{\circ}\text{C}$, температуры воздуха $6 \div 35 \,^{\circ}\text{C}$, относительной влажности $28 \div 98 \,^{\circ}\text{K}$, разности давлений на поверхности воды и в воздухе $210 \div 80\,156\,\Pi$ а и обобщено на случай незаполненных крытых бассейнов, когда плотность воздуха, контактирующего с поверхностью воды, больше плотности воздуха в помещении [20]. В [21] исследовалось влияние степени заполненности бассейна на скорость испарения. В работе [22] предложены методы расчета скорости испарения для бассейнов и резервуаров различного типа.

Скорость испарения газа, протекающего над поверхностью жидкости, также можно вычислить на основе теории мономолекулярной диффузии, требующей определения коэффициента массообмена k_G . Коэффициенты тепло- и массообмена можно определить, если известна зависимость коэффициента J_M от числа Рейнольдса. Эта зависимость приведена в работе [1]. При z=2/3 соотношение (9) записывается в следующем виде:

$$J_M = \frac{k_C \rho_G}{v_G \rho_{v,f}} \operatorname{Sc}^{2/3}.$$

С учетом (3), (5), $k_c = k_G RT$, $\rho_{v,f} = m_v/V = p_v M_{\rm H_2O}/(RT)$ выражение для коэффициента пропускания потока массы принимает вид

$$J_M = \frac{k_G RTPM/(RT)}{v_G \rho_{v,f}} \operatorname{Sc}^{2/3}.$$

В соответствии с теорией диффузии коэффициент испарения находим по формуле

$$\sigma_{dif} = \frac{J_M v_G \rho_f}{PM \operatorname{Sc}^{2/3}} RT, \tag{16}$$

скорость испарения — по формуле

$$N_{\rm H_2O}^{dif} = \frac{J_M v_G \rho_f}{PM \, \text{Sc}^{2/3}} \, RT(Y_f - Y_G). \tag{17}$$

Процесс испарения исследовался многими авторами (см., например, [23, 24]). В [25, 26] изучался процесс теплообмена при испарении смесей фреона при течении пленок на глад-ких и структурированных поверхностях, в [27] приведены результаты исследований переноса тепла и критических процессов в тонких слоях масла при испарении.

Экспериментальная установка и методы исследования. В работах [4–13] рассматривались случаи, когда поверхность воды охлаждается в результате испарения, и не рассматривались случаи, когда интенсивность испарения увеличивается за счет подведения к жидкости источника тепла (например, в бассейнах для временного хранения ядерных топливных элементов). Разработаны метод измерения и измерительная станция для тестирования нагретой жидкости в бассейнах, пригодные для исследования процессов испарения, интенсивность которых увеличивается вследствие наличия источников тепла при естественной и вынужденной конвекции. Целями исследования являются определение скорости испарения при различных условиях и расчет коэффициента испарения.

Экспериментальная установка. Схема экспериментальной установки приведена на рис. 4. Измерительный сосуд 1 с круглым поперечным сечением диаметром 240 мм, высотой 120 мм, заполненный водой, нагревался снизу с помощью электрического нагревателя 2

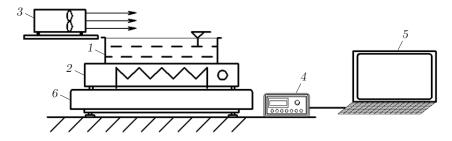


Рис. 4. Схема экспериментальной установки:

1 — измерительный сосуд, 2 — электрический нагреватель, 3 — вентилятор,

4 — регистратор данных, 5 — компьютер, 6 — цифровые весы

для поддержания постоянной температуры поверхности воды (40 °C). Горизонтальный поток воздуха подавался от вентилятора 3, расположенного на некотором расстоянии от сосуда; скорость потока воздуха, подаваемого вентилятором, можно регулировать с помощью заглушек. Для записи необходимых данных (скорость воздуха, температура окружающей среды, температура поверхности воды, масса воды, влажность окружающего воздуха, атмосферное давление) использовались измерительные датчики, регистратор данных 4 и компьютер 5. Измерительный сосуд и блок электрического нагревателя устанавливались на цифровые весы 6, с помощью которых определялись изменения массы воды; изменением толщины слоя воды пренебрегалось. Температура поверхности воды измерялась с помощью помещенного над ней инфратермометра AMiR 7842. Скорость воздуха измерялась с помощью термоанемометра TSI 8475-300-1 при малых скоростях ($v_G < 1,5 \text{ м/c}$), а также с помощью измерителя скорости движения воздуха с крылатым колесом Schiltknecht C-69781.

Методы исследования. В случае если коэффициент теплопереноса α_{an} известен, с помощью соотношения (10) можно вычислить коэффициент переноса массы k_c и коэффициент испарения σ_{an} . Измерения проводились в случаях свободной и вынужденной конвекции при различной скорости движения воздуха. В ходе измерений определялась масса воды $\Delta m_{\rm H_2O}$, испаряющейся за определенный период времени. При известных температуре поверхности воды и температуре воздуха определялись физические свойства воздуха. При $0.6 \leqslant {\rm Pr} \leqslant 50, {\rm Re} < 5 \cdot 10^5$ выражение для числа Нуссельта принимает следующий вид [28, 29]:

— в случае ламинарного вынужденного течения вдоль плоской поверхности

$$Nu_{lam} = 0.664\sqrt{\text{Re}}\,\text{Pr}^{1/3}\,\Phi_T,$$

— в случае естественной конвекции

$$Nu_{nat} = 0.27 Ra^{0.25}$$
.

Коэффициент теплопереноса находится по формуле

$$\alpha_{an} = \operatorname{Nu} \lambda_G / L$$

где λ_G — теплопроводность газа. Поскольку процесс испарения аналогичен процессу тепломассообмена, с использованием уравнения (11) выражения для коэффициента испарения представим в виде

$$\sigma_{an} = \alpha_{an}/c_G. \tag{18}$$

С помощью уравнения (7) можно вычислить скорость испарения

$$N_{\rm H_2O}^{an} = \sigma_{an}(Y_f - Y_G). \tag{19}$$

Скорость испарения можно определить на основе измерений, если известна масса жидкости, испарившейся с поверхности за определенный период времени:

$$N_{\rm H_2O}^{me} = \frac{\Delta m_{\rm H_2O}}{A\Delta t} \tag{20}$$

(A- площадь поверхности, на которой происходит тепло- и массоперенос). С использованием (20) находим коэффициент испарения

$$\sigma_{me} = N_{\text{H}_2\text{O}}^{me} / (Y_f - Y_G). \tag{21}$$

Результаты исследования и их обсуждение. На рис. 5 приведена зависимость массы испарившейся воды от времени. Экспериментально полученные данные представлены в табл. 2.

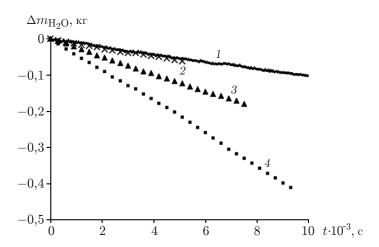


Рис. 5. Зависимость массы испарившейся воды от времени в случаях свободной (1) и вынужденной (2–4) конвекции при различной скорости воздуха: 2 — $v_G=0.2~{\rm m/c},~3$ — $v_G=1.0~{\rm m/c},~4$ — $v_G=1.9~{\rm m/c}$

 ${\rm Taf}_{\pi\pi\pi} = 2$ Экспериментальные значения параметров процесса испарения, полученные при различных скоростях воздуха

v_G , м/с	T_G , °C	Y_G	dm/dt , Γ/c	T_f , °C	Y_f	$ρ_G$, κΓ/ M^3	$N_{\rm H_2O}, \Gamma/({ m M}^2 \cdot { m c})$	σ , $\Gamma/(M^2 \cdot C)$
Естественная								
конвекция	28,9	6,50	0,01012	39,6	48,36	1,132	0,224	5,34
0,2	23,9	7,81	0,012 15	40,2	50,62	1,152	0,269	6,27
1,0	24,5	7,71	0,024 00	39,8	49,32	1,149	0,531	12,75
1,9	23,1	6,37	0,044 19	40,0	49,81	1,155	0,977	22,49

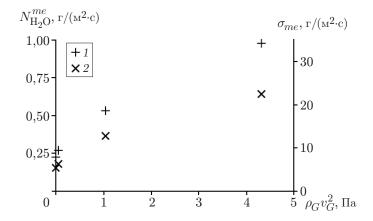


Рис. 6. Зависимости скорости испарения (1) и коэффициента испарения (2) от динамического давления

 ${\rm T}\, a\, \delta\, \pi\, u\, u\, a\, \, 3$ Отношения экспериментальных и теоретических значений скорости и коэффициента испарения

v_G , м/с	$N_{ m H_2O}^{me}/N_{ m H_2O}^{an}$	σ_{me}/σ_{an}
Естественная конвекция	2,57	2,63
$0,\!2$	1,63	1,65
1,0	1,43	1,46
1,9	1,31	1,31

Таблица 4

Значения скорости испарения, полученные при различных условиях

	боты	Расчет по	уравнению (17)		0,121	0,179	0,372	0,598
	Данные настоящей работы		о уравнению (19)		0,105	0,158	0,374	0,667
	Данные	Расчет по	уравнению (20)		0,267	0,291	0,532	0,884
		Данные работы	[18]		0,303	0,342	0,509	0,727
(;		Данные работы	[12]		0,098	0,105	0,164	0,215
$N_{\mathrm{H}_2\mathrm{O}},\Gamma/(\mathrm{M}^2\cdot\mathrm{c})$		Данные работы	[11]		0,184	0,199	0,320	0,425
$N_{ m H}$		Данные работы	[10]		0,201	0,211	0,294	0,367
		Данные работы	[6]		0,299	0,323	0,525	0,701
		Данные работы	<u>®</u>		0,225	0,243	0,362	0,464
		Данные работы	[2]		0,408	0,429	0,599	0,733
		Данные работы	[9]		0,132	0,145	0,261	0,369
		Данные работы	ত্র		0,245	0,267	0,449	0,612
		v_G , M/c		Естественная	конвекция	0,2	1,0	1,9

Таблица 5

Значения коэффициента испарения, полученные при различных условиях

						ρ	$\sigma, \Gamma/(\mathrm{M}^2 \cdot \mathrm{c})$					
										Данные	Данные настоящей работы	аботы
v_G , M/c	Данные работы	Данные работы	Данные работы	Расчет по	Расчет по	Расчет по						
	<u></u>				[6]	[10]	[11]	[12]	[18]	уравнению (21)	уравнению (18)	уравнению (16)
Естественная												
конвекция	6,05	3,25	10,07	5,57	7,37	4,95	4,55	2,41	7,47	6,38	2,52	2,71
0,2	6,24	3,42	10,02	5,62	7,55	4,92	4,65	2,45	8,01	6,94	3,69	3,91
1,0	10,79	6,27	11,14	8,71	12,61	7,08	69,2	3,94	12,22	12,87	8,99	8,35
1,9	14,25	8,63	17,11	10,83	16,35	8,41	9,93	5,03	16,97	20,61	15,61	12,97

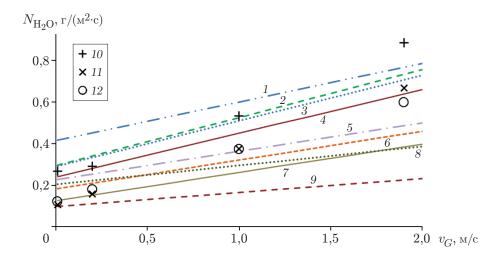


Рис. 7. Зависимости скорости испарения от скорости потока газа: 1 — данные работы [7], 2 — данные работы [9], 3 — данные работы [18], 4 — данные работы [5], 5 — данные работы [8], 6 — данные работы [11], 7 — данные работы [6], 8 — данные работы [10], 9 — данные работы [12], 10—12 — данные настоящей работы (10 — расчет по формуле (20), 11 — расчет по формуле (19), 12 — расчет по формуле (17))

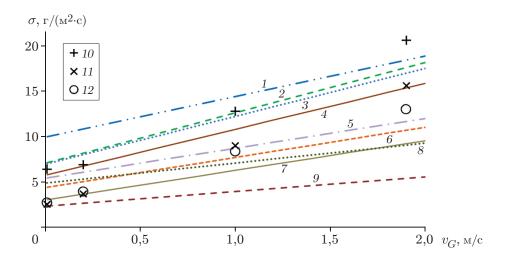


Рис. 8. Зависимость коэффициента испарения от скорости потока газа: 1 — данные работы [7], 2 — данные работы [9], 3 — данные работы [18], 4 — данные работы [5], 5 — данные работы [8], 6 — данные работы [11], 7 — данные работы [6], 8 — данные работы [10], 9 — данные работы [12], 10—12 — данные настоящей работы (10 — расчет по формуле (21), 11 — расчет по формуле (18), 12 — расчет по формуле (16))

На рис. 6 приведены зависимости скорости испарения воды и коэффициента испарения от динамического давления, построенные по данным пяти экспериментов. Видно, что значения скорости испарения и коэффициента испарения увеличиваются при увеличении скорости воздуха. Для того чтобы определить уравнение прямой, аппроксимирующей экспериментальные данные, необходимы дальнейшие измерения. В табл. 3 приведены отношения экспериментальных и теоретических значений скорости испарения $N_{\rm H_2O}^{me}/N_{\rm H_2O}^{an}$ (19), (20) и коэффициентов испарения σ_{me}/σ_{an} (18), (21). В табл. 4, 5 приведены экспериментальные и теоретические значения скорости и коэффициента испарения, полученные при различных условиях. При сравнении использовались константы, приведенные в табл. 1.

На рис. 7, 8 представлены зависимости скорости испарения и коэффициента испарения от скорости потока газа. Видно, что результаты проведенных экспериментов и расчетов совпадают с некоторыми известными данными. Различие углов наклона кривых, проходящих через точки, полученные экспериментально и теоретически, и прямых линий, взятых из литературы, обусловлено тем, что в литературе рассматриваются случаи отсутствия источников тепла, наличия испарения в бассейне с водой, находящейся в состоянии покоя. Значения, соответствующие кривым 1, 9, различаются приблизительно в четыре раза.

Заключение. В работе экспериментально исследован процесс испарения с поверхности жидкости. Проведено сравнение полученных данных с известными данными. В рассмотренных случаях испарение происходило не только под воздействием окружающей среды, но и за счет подогрева жидкости.

ЛИТЕРАТУРА

- 1. Treybal R. E. Mass-transfer operations. N. Y.: McGraw-Hill Co., 1981.
- 2. **Szentgyörgyi S.** Transzportfolyamatok (Transport processes) / S. Szentgyörgyi, K. Molnár, M. Parti. Budapest: Tankönyvkiadó, 1986.
- 3. Örvös M. Diffúziós eljárások és berendezések (Diffusion processes and equipments). Budapest: BMGE, 2006.
- 4. **Kontur I.** Hidrológiai számítások (Hydrological calculations) / I. Kontur, K. Koris, J. Winter. Budapest: Linográf Kiadó, 2003.
- 5. Carrier W. H. The temperature of evaporation // ASHVE Trans. 1918. V. 24. P. 25–50.
- 6. **Tang R., Etzion Y.** Comparative studies on the water evaporation rate from wetted surface and that from a free water surface // Building Environment. 2004. V. 39, N 1. P. 77–86.
- 7. **Himus G. W., Hinchly J. W.** The effect of a current of air on the rate of evaporation of water below the boiling point // J. Soc. Chem. Industry. 1924. V. 43, N 34. P. 840–845.
- 8. Rohwer C. Evaporation from free water surface. Washington, 1931. (Tech. Bull. / US Department Agriculture; N 271).
- 9. **Lurie M., Michailoff N.** Evaporation from free water surface // Industr. Engng Chem. 1936. V. 28, N 3. P. 345–350.
- 10. **Meyer A. F.** Evaporation from lakes and reservoirs. Minnesota: Minnesota Resources Commission, 1942.
- 11. Smith C. C., Jones R. W., Lof G. O. G. Energy requirements and potential savings for heated indoor swimming pools // ASHRAE Trans. 1993. V. 99, N 2. P. 864–874.
- 12. McMillan W. Heat dispersal Lake Trawsfynydd cooling studies // Proc. of the symp. on freshwater biology and electrical power generation. 22 Apr. 1971. Leatherhead: Central Electricity Generating Board, 1971. Pt 1. P. 41–80.
- 13. Gangopadhyaya M., Harbeck G. E., Nordenson T. J., et al. Measurement and estimation of evaporation and evapotranspiration. Geneva, 1966. (Tech. Note / World Meteorol. Org.; N 83).

- 14. Cavelius R. Passive cooling technologies / R. Cavelius, C. Isaksson, E. Perednis, G. E. F. Read. Wien: Austrian Energy Agency, 2013.
- 15. **Sartori E.** A critical review on equations employed for the calculation of the evaporation rate from free water surfaces // Solar Energy. 2000. V. 68, N 1. P. 77–89.
- 16. Watmuff J. H., Charters W. W. S., Proctor D. Solar wind induced external coefficients for solar collectors // COMPLES. 1977. V. 2. P. 56.
- 17. **Bower S. M., Saylor J. R.** A study of the Sherwood Rayleigh relation for water undergoing natural convection-driven evaporation // Intern. J. Heat Mass Transfer. 2009. V. 52. P. 3055–3063.
- 18. **Evaporating** from water surfaces. [Электрон. ресурс]. Режим доступа: http://www.engineeringtoolbox.com/evaporation-water-surface-d_690.html.
- 19. **Shah M. M.** Improved method for calculating evaporation from indoor water pools // Energy Buildings. 2012. V. 49. P. 306–309.
- 20. **Shah M. M.** Calculation of evaporation from indoor swimming pools: Further development of formulas // ASHRAE Trans. 2012. V. 118, pt 2. P. 460–466.
- 21. **Shah M. M.** New correlation for prediction of evaporation from occupied swimming pools // ASHRAE Trans. 2013. V. 119, pt 2. P. 450–455.
- 22. **Shah M. M.** Methods for calculation of evaporation from swimming pools and other water surfaces // ASHRAE Trans. 2014. V. 120, pt 2. P. 3–17.
- 23. **Garbai L., Sánta R.** Flow pattern map for in tube evaporation and condensation // Proc. of the 4th Intern. symp. on exploitation of renewable energy sources, Subotica (Serbia), 9–10 Mar. 2012. Subotica: Subotica Tech., 2012. P. 125–130.
- 24. **Santa R.** The analysis of two-phase condensation heat transfer models based on the comparison of boundary condition // Acta Polytech. Hungarica. 2012. V. 9, N 6. P. 167–180.
- 25. Volodin O. A., Pavlenko A. N., Pecherkin N. I. Heat transfer and wave characteristics of a binary freon film flowing over a three-dimensional texture surface // High Temperature. 2013. V. 51, N 6. P. 785–794.
- 26. **Pecherkin N. I., Pavlenko A. N., Volodin O. A.** Heat transfer at evaporation of falling films of freon mixture on the smooth and structured surfaces // Thermophys. Aeromech. 2011. V. 18, N 4. P. 579–589.
- 27. **Zhukov V. I., Pavlenko A. N.** Critical phenomena at evaporation in a thin liquid layer at reduced pressure // J. Engng Thermophys. 2013. V. 22, N 4. P. 257–287.
- 28. Környey T. Höátvitel (Heat transfer). Budapest: Müegyetemi Kiadó, 1999.
- 29. **Bihari P.** Müszaki hötan Höközlés feladatgyüjtemény és segédlet (Heat transfer, educational curriculum). Budapest: BME, 2010.

Поступила в редакцию $27/XII\ 2013\ г.,$ в окончательном варианте — $2/X\ 2014\ г.$