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The manuscript presents the results of an application of a numerical method to solve one-dimensional
hyperbolic equations. These equations simulate the dynamics of a liquid in a pipe with varying cross-sections.
The equations are written in terms of pressure-head and discharge. Radial-basis functions and least-squares
optimization are used for the numerical simulation. This numerical method is specialized for working with
arbitrary nodal distribution in the problem domain. The basics of the application of the numerical method
were introduced in our previous work. In the current work, we updated previously applied methods by means
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of the simulations of the reservoir-pipe-valve system are described, indicating that the sharp time-gradient
phenomenon is reproduced by the model.
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1. Введение

Любое быстрое изменение импульса потока жидкости под давлением вызывает бегу-
щую волну давления, называемую гидроударом. Если это явление не учитывать долж-
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ным образом, оно может вызвать повреждение гидравлического оборудования. Система
гиперболических уравнений в частных производных описывает это явление математи-
чески, а метод характеристик (МХ) является общепринятым подходом для численного
моделирования задачи [1]. Несмотря на эффективность и простоту, МХ не так легко
использовать для решения задач с изменяющимися физическими свойствами, напри-
мер при меняющихся свойствах материала стенок или поперечного сечения трубы. Так-
же трудно применять метод адаптивного уточнения с использованием МХ или других
подходов, основанных на временно-маршевых методах [2, 3], вследствие изменяющего-
ся во времени положения волнового фронта или разрыва решения. Пространственно-
временной подход, представленный в [4–6], применяется во многих научных задачах, в ос-
новном в контексте метода конечных элементов (МКЭ), а также для анализа адаптивного
уточнения нестационарных задач. Халберт и Хьюз [7] использовали пространственно-
временной МКЭ для решения задач эластодинамики, включающих резкие градиенты.
Они доказали безусловную устойчивость и высокий порядок точности пространственно-
временной конечно-элементной формулировки. Тездуяр с соавторами [8, 9] представи-
ли конечно-элементную стратегию для течений со свободной поверхностью, основанную
на пространственно-временной процедуре деформирования пространственной области.
Бер [10] использовал этот же метод для трехмерных вычислений методом конечных эле-
ментов нестационарных несжимаемых течений со свободной поверхностью. Тездуяр с
соавторами [11] расширили этот метод для численного расчета взаимодействий жидко-
сти со структурой. Некоторые недавние работы в области пространственно-временных
конечно-элементных формулировок можно найти в [12–16]. Пространственно-временная
формулировка также использовалась в других численных методах. Например, Цварт
с соавторами [17] разработали интегрированный пространственно-временной метод ко-
нечных объемов для моделирования потока жидкости. Клайдж с соавторами [18] пред-
ставили разрывный в пространстве–времени метод конечных элементов Галеркина для
решения сжимаемых уравнений Навье–Стокса. Нетужилов и Зилиан [19] разработали
пространственно-временной бессеточный метод коллокации для решения систем нели-
нейных обыкновенных уравнений и уравнений в частных производных путем последо-
вательной дискретизации как в пространственной, так и во временной областях. В дан-
ной статье метод радиальной точечной интерполяции используется для аппроксимации
функции как во временной, так и в пространственной областях. Метод наименьших квад-
ратов применяется для поиска тех решений, которые минимизируют сумму квадратов
невязок, полученных в результате процедуры интерполяции. Метод радиальной точеч-
ной интерполяции и оптимизация методом наименьших квадратов [20] использовались
для численного решения одномерных уравнений, описывающих неустановившееся тече-
ние в трубе. В [20] только пространственная область была дискретизирована с исполь-
зованием рассеянных узлов, а во временной области использовался временно-маршевый
метод. Метод наименьших квадратов широко использовался для решения дифферен-
циальных уравнений в частных производных (ДУЧП) при помощи МКЭ [21–23]. Этот
же метод был применен для минимизации квадратов невязок в результате использова-
ния метода наименьших квадратов [24, 25] и методов радиальной точечной интерполя-
ции [26,27]. В настоящем исследовании пространственно-временная область одномерных
нестационарных задач дискретизируется с использованием узлов, рассеянных в двумер-
ном вычислительном пространстве, для нахождения окончательного решения путем ре-
шения линейной системы уравнений. Предлагается точечный подход для дискретизации
области. Элементы не используются, но узлы могут быть неравномерно распределены
в пространственно-временной области. Этот подход позволяет выполнять эффективный
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анализ адаптивного уточнения. Стратегия перемещения узлов основана на градиенте
начальных результатов. Узлы смещены в соответствии с температурным анализом фер-
менной конструкции. Нелинейные граничные условия возникают, когда клапан в задачах
гидравлического удара не закрывается мгновенно. В данной статье представлен простой
итерационный метод получения граничных условий для гидроудара с немгновенным за-
крытием клапана. С помощью предложенной методики численно решаются три задачи.
Адаптивное узловое распределение используется для дискретизации области и исследу-
ется его влияние на решение.

2. Определяющие уравнения и дискретизация области

Определяющее уравнение одномерной задачи о гидроударе было выведено и подроб-
но описано в [20]. Здесь оно кратко представлено. Рассмотрим течение без трения (в
z-направлении) слабо сжимаемой жидкости в осесимметричной неоднородной горизон-
тальной круглой трубе радиуса R(z). При предположении небольшого изменения пло-
щади поперечного сечения dR(z)

dz
� 1 радиальной составляющей скорости можно пре-

небречь, что приводит к однонаправленному потоку. После интегрирования по радиусу
трубы [20] уравнения неразрывности и импульса можно записать в виде

∂H

∂t
+

c2

gA

∂Q

∂z
= 0, (1)

∂Q

∂t
+ gA

∂H

∂z
= 0, (2)

где H, c, g, A, Q и t — напор, скорость звука в жидкости, ускорение силы тяжести,
площадь поперечного сечения, расход и время соответственно. Граничные условия для
уравнений (1) и (2) можно записать в виде

H = Hb в точках, где напор известен (в резервуаре), (3)

Q = Qb в точках, где расход известен (в клапане), (4)

где Hb и Qb — напор и расход на соответствующих границах соответственно. Уравнения
(1) и (2) решаются одновременно с учетом граничных условий (3) и (4). По сравнению

с другими коэффициентами в определяющих уравнениях коэффициент
(
c2

g

)
намного

больше единицы (порядка 105 в водонаполненных стальных трубах) и таким образом
влияет на число обусловленности окончательной матрицы коэффициентов. Эта задача
решается путем обезразмеривания определяющих уравнений, так что все члены стано-
вятся членами первого порядка. Безразмерные напор H∗, расход Q∗, время t∗, коорди-
ната z∗, скорость звука c∗, площадь поперечного сечения A∗ и ускорение силы тяжести
g∗ определяются следующим образом:

H∗ = H
g0A0

Q0c0
, Q∗ =

Q

Q0
, t∗ =

tc0
L0
, z∗ =

z

L0
, c∗ =

c

c0
, A∗ =

A

A0
, g∗ =

g

g0
,

где A0, Q0, c0, L0 и g0 — базовая площадь поперечного сечения, расход, скорость звука,
длина трубы и ускорение силы тяжести соответственно. Вставив безразмерные перемен-
ные в определяющие уравнения и граничные условия (1)–(4), получим безразмерные
определяющие уравнения и граничные условия:
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∂H∗
∂t∗

+
c∗

2

g∗A∗

∂Q∗
∂z∗

= 0, (5)

∂Q∗
∂t∗

+ g∗A∗
∂H∗
∂z∗

= 0, (6)

H∗ = Hb∗ в точках, где напор известен (в резервуаре), (7)

Q∗ = Qb∗ в точках, где расход известен (в клапане), (8)

где Hb∗ = Hb
g0A0

Q0c0
, Qb∗ =

Qb

Q0
. Все коэффициенты в определяющих уравнениях (5)–(8)

будут близки к единице, если для базовых параметров будут выбраны правильные зна-
чения. В данной статье радиальные базисные функции (РБФ) используются для аппрок-
симации функций, а масштабированная вычислительная область повышает ее качество
[28]. В качестве начальных условий рассматриваются Q = Q0 и H = Hb. Заметим, что
поскольку применяется пространственно-временная формулировка, начальные условия
превращаются в граничные условия на границе t∗ = 0. Лашкарболок и Тейсселинг [20]
представили метод, основанный на РБФ и методе наименьших квадратов, для решения
задачи о гидроударе. В данной статье используем те же методы, но в пространственно-
временной области. Подробная формулировка методики представлена в приложении.
Мы не используем каких-либо временно-маршевых методов, а пространство–время —
это наша вычислительная двумерная область, которая дискретизируется с использова-
нием рассеянных узлов. Пространственно-временная область z∗ − t∗ дискретизируется
с использованием N произвольно распределенных узлов, как показано на рисунке 1.
На рис. 1 rk определяется выбором числа опорных узлов k-й точки коллокации. Были
выбраны 25 опорных узлов для каждой точки коллокации во всех тестовых задачах.

Рис. 1. Дискретизация выборочной области; сплошная и пунктирная линии показывают гра-
ницу области и локальную область точки коллокации соответственно

3. Метод адаптивного уточнения

Процедура адаптивного уточнения используется для целенаправленной дискретиза-
ции области задачи. Здесь предлагается метод перемещения узлов, основанный на гра-
диенте начального решения. В этом методе узлы смещаются в сторону положений, где
требуется более высокая точность. Пошаговое описание процедуры следующее.

Шаг 1. Дискретизация пространственно-временной области с использованием равно-
мерного распределения узлов, как показано на рис. 2 а.
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Рис. 2. Первичное равномерное узловое распределение (a), геометрия ферменной конструк-
ции (б), новая конфигурация элементов фермы после температурной загрузки (в) и адаптивное
узловое распределение (г)

Шаг 2. Решение уравнений (5)–(8) и получение результатов с использованием мето-
да, предложенного в [20]. Модифицированный градиент напора E рассчитывается
следующим образом:

E = ln

(
1 +

√(
∂H∗
∂t∗

)2

+

(
∂H∗
∂z∗

)2
)
. (9)

Шаг 3. Соединение всех узлов с использованием элементов фермы [29, с. 67–89] и
[30, с. 103–119], как показано на рис. 2 б. Несущие опоры рассматриваются для
узлов на границах.

Шаг 4. Определение температуры для каждого элемента фермы. Температура m-го
элемента фермы θ(m) (рис. 3) вычисляется следующим образом:

θ(m) = −Ei + Ej

2
. (10)

Рис. 3. m-й элемент с соединениями

Шаг 5. Новые положения стыков ферм определяются путем расчета вызванных тем-
пературой перемещений с использованием обычного МКЭ для анализа элементов
фермы [30, с. 111–114]. Для получения перемещений узлов фермы необходима пло-
щадь поперечного сечения элементов фермы, умноженная на модуль упругости AE
и коэффициент линейного расширения γ. AE и γ — настраиваемые параметры в
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нашей стратегии перемещения узлов для корректировки относительных расстоя-
ний между узлами. Более высокое значение γ и меньшее значение AE приводят
к более плотному распределению узлов. Новая конфигурация элементов фермы
(рис. 2 в) дает новые положения узлов на рис. 2 г. Новое адаптивное распределение
узлов используется для решения уравнений (5)–(8).

Блок-схема описанной выше пятишаговой процедуры показана на рис. 4.

Рис. 4. Блок-схема процедуры адаптивного уточнения

4. Нелинейное немгновенное закрытие клапана

Рисунок 5 показывает систему резервуар–труба–клапан. Когда клапан закрывается
постепенно, существует взаимосвязь между расходом, напором и временем закрытия Tc
на границе клапана. Например, используя измерение расхода шарового клапана из [31]
на клапане (z∗ = 1 для l = l0), мы имеем

Q∗ = τ

√
H∗
Hb∗

, (11)

где τ — функция времени, определяемая как в [31]:
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τ =



(
1 − t∗

Tc∗

)3.53

, t∗ ≤ 0.4Tc∗,

0.394

(
1 − t∗

Tc∗

)1.7

, 0.4Tc∗ ≤ t∗ ≤ Tc∗,

0, Tc∗ ≤ t∗ ≤ Tend,

(12)

где Tend — безразмерное время окончания моделирования, Tc∗ вычисляется следующим
образом:

Tc∗ = Tc
c0
L0.

(13)

Рис. 5. Система резервуар–труба–клапан

Рисунок 6 показывает расчетную область системы резервуар–труба–клапан с нели-
нейным граничным условием на клапане.

Рис. 6. Расчетная область с граничным условием
нелинейного немгновенного закрытия клапана

На рис. 6 расчетная область разделена на две части. В нелинейной части выполняется
нелинейное граничное условие, поскольку Q∗ — нелинейная функция неизвестной H∗
на границе. В линейной части выполняются линейные граничные условия и решаются
определяющие уравнения с использованием процедуры, предложенной в пункте 3. Для
решения таких задач предлагаются следующие шаги.

Шаг 1. Нелинейная часть рассматривается в качестве расчетной области. Другими сло-
вами, расчетная область ограничена 0 ≤ t∗ ≤ Tc∗ и 0 ≤ z∗ ≤ 1.

Шаг 2. H∗ предполагается равным Hb∗ на границе клапана. Таким образом, Q∗ на этой
же границе —Qb∗, вычисляется какQb∗ = τ . Этот шаг считается нулевой итерацией
iter = 0.

Шаг 3. Теперь Qb∗ известно на границе клапана. Используя известные граничные усло-
вия, уравнения (5)–(8) решаются для получения Q∗ и H∗ в расчетной области
0 ≤ t∗ ≤ Tc∗ и 0 ≤ z∗ ≤ 1.
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Шаг 4. Скорректированное Qb∗ рассчитывается с использованием скорректированного
H∗ на границе клапана (z∗ = 1) следующим образом:

Qb∗ = τ

√
H∗
Hb∗

.

Шаг 5. Критерий сходимости Cindex определяется следующим образом:

Cindex =

∑nb
i=1

(
Qiter−1

b∗,i −Qiter
b∗,i
)2

nb
, iter ≥ 1, (14)

где nb — число узлов в нелинейной части границы клапана, Qiter−1
b∗,i и Qiter

b∗,i — это Q∗
на i-м граничном узле на (iter − 1)-й итерации и Q∗ на i-м граничном узле на
iter-й итерации соответственно. Если Cindex ≤ ε, переходим наШаг 6, в противном
случае переходим на Шаг 3.

Шаг 6. С использованием Q∗ в результате сходимости на границе клапана уравнения
(5)–(8) решаются для получения Q∗ и H∗ во всей расчетной области 0 ≤ t∗ ≤ Tend
и 0 ≤ z∗ ≤ 1.

5. Примеры

В данном пункте мы решим три задачи для оценки эффективности предлагаемой
схемы. Во всех задачах рассматривается большая система резервуар–труба–клапан для
исследования истории напора на шаровом клапане во время и после закрытия клапана.
Здесь и далее напор Ph определяется как

Ph=
(H −Hb)g0A0

Q0c0
. (15)

Время закрытия клапана Tc предполагается с учетом граничных условий, определен-
ных в уравнениях (12)–(14). Для равномерного узлового распределения ∆z∗ =
∆t∗ = 0.02, где ∆z∗ и ∆t∗ — равномерные расстояния между узлами вдоль направ-
лений z∗ и t∗ соответственно. Общие характеристики всех задач приведены в таблице.

Таблица. Необходимые параметры для тестовых задач

c0 Q0 g и g0 A0 l и l0 Hb AE γ ε

1025.7
(м

с

)
0.5

(м3

с

)
9.81

( м

с2

)
0.50(м2) 20(м) 100(м) 106(N) 0.1

(
1

◦C

)
10−8

5.1. Задача 1

Рассмотрим систему резервуар–труба–клапан на рис. 5. Здесь Tend равно 8 и c = c0.
Задача решается для трех различных времен закрытия клапана: 0.01, 0.03 и 0.07 с. Для
каждого Tc задача сначала решается с использованием равномерного узлового распреде-
ления. Затем решение повторяется с использованием адаптивного узлового распределе-
ния. Чтобы показать сходимость Q∗ в нелинейной части границы клапана, значения Q∗
показаны на различных итерациях при Tc = 0.03 с или Tc∗ = 1.5386 на рис. 7. Хорошо
видно, что процедура нахождения граничного условия на нелинейной границе в этом
случае быстро сходится. В соответствии с процедурой вычисления нелинейных гранич-
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ных условий для клапана, описанной в п. 5, нелинейная часть просто учитывается в
итерационном решении для нахождения Q∗ на границе клапана.

Рис. 7. Сходимость Q∗ в нелинейной ча-
сти расчетной области для задачи 1 при
Tc = 0.01 с

Равномерное и соответствующее адаптивное узловые распределения (число узлов
одинаково) для задачи 1 при Tc = 0.01 с показаны на рис. 8 а и 8 б соответственно. Ис-
тория напора на клапане для Tc = 0.01 с представлена на рис. 9. Видно, что адаптивное
узловое распределение лучше, чем равномерное узловое распределение. Быстрое закры-
тие клапана создает давление Жуковского, или Ph = 1, только если время закрытия Tc
меньше времени отражения волны 2l/c [31].

Рис. 8. Равномерное узловое распределе-
ние (a) и адаптивное узловое распределение
(б) для задачи 1

Рис. 9. Напор на клапане при Tc = 0.01 с с
использованием равномерного и адаптивного уз-
ловых распределений в задаче 1

Время отражения волны в этой задаче равно 0.039 с. На рис. 10 показана история
напора на клапане с использованием адаптивного узлового распределения в различные
моменты времени закрытия. Результаты показывают неплохую тенденцию к давлению
Жуковского при уменьшении Tc. Мы использовали 20400 узлов для дискретизации об-
ласти, как показано на рис. 8 a. В предлагаемом методе, если N точек используется для
дискретизации области, необходимо решить линейную систему уравнений с 2N неиз-
вестными, поскольку уравнения сохранения массы и импульса связаны неявным обра-
зом. Время, необходимое для решения системы из 40800 уравнений и 40800 неизвестных,
составило около 17 с с использованием процессора AMD Phenom(tm) II X6 1090T. Код
написан в MATLAB, а вычисления выполнены с использованием модулей параллель-
ных вычислений с разреженными матрицами. Представленный метод не имеет предела
дискретизации и разброс точек на пространственно-временной плоскости может быть
произвольным. Это позволяет нам применять адаптивную дискретизацию области и, в
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отличие от временно-маршевых методов, мы можем получить результаты более высокого
качества без увеличения числа узлов при дискретизации и, следовательно, без увеличе-
ния вычислительных затрат. Хотя на первый взгляд предлагаемый метод дороже, чем
временно-маршевые методы, его возможности специальной дискретизации области могут
сделать его пригодным для численного решения некоторых задач в области нестацио-
нарного течения жидкости.

Рис. 10. Напор на клапане в задаче 1 с использованием адаптивного узлового распределения

5.2. Задача 2

Предполагается, что участок трубы в задаче 1 имеет различные механические свой-
ства. Таким образом, скорость звука (c) изменяется вдоль трубы, как показано на рис. 11.
Эта задача была сформулирована ранее и решена численно в [31]. Изменение c в расчет-
ной области показано на рис. 12. История напора в различное время закрытия клапана
рассчитывается с помощью процедуры, описанной в задаче 1. Влияние адаптивного узло-
вого распределения на качество результатов при Tc = 0.01 с показано на рис. 13. Можно
увидеть, что лучшие результаты получаются при использовании специальной дискрети-
зации области. Рисунок 14 показывает влияние Tc на историю напора на клапане. В этой
задаче при любом времени закрытия получается более высокий напор, чем в задаче 1,
ввиду различных механических свойств трубы. Как и ожидалось, повышение давления
уменьшается при более медленном закрытии клапана.

Рис. 11. Свойства трубы в задаче 2 Рис. 12. Скорость звука (c) в расчет-
ной области задачи 2
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Рис. 13. История напора на клапане при Tc = 0.01 с в задаче 2

Рис. 14. История напора на клапане при различных Tc в задаче 2

5.3. Задача 3

Труба в задаче 1 заменена на коническую трубу, показанную на рис. 15. Площадь
поперечного сечения трубы у резервуара равна A0 и линейно возрастает до 2.5A0 на
клапане. Здесь Tend равно 12 и c = c0.

Рис. 15. Система резервуар–коническая труба–клапан для задачи 3

Адаптивное узловое распределение на рис. 16 а получено с использованием той же
процедуры решения, что и в задаче 1. Задача решена с использованием адаптивного
узлового распределения для получения истории напора на клапане при Tc = 0.01 с. На
рис. 16 б показано распределение напора в расчетной области. Согласно результатам, при
предлагаемом адаптивном узловом распределении, большее число узлов находится в об-
ластях с более высокими градиентами. Численные результаты при временах закрытия
клапана 0.01 с и 0.07 с, а также аналитическое решение, полученное при Tc = 0 [32], по-



418 СИБИРСКИЙ ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ. 2024. Т. 27, N◦-- 4

казаны на рис. 17. Результаты снова показывают неплохую тенденцию динамики напора
к аналитическому результату за счет сокращения времени закрытия клапана.

Рис. 16. Адаптивное узловое распределе-
ние и распределение напора для задачи 3 при
Tc = 0.01 с

Рис. 17. История напора на клапане для за-
дачи 3

6. Вывод

Представлен метод, основанный на пространственно-временной формулировке, для
решения одномерной задачи о гидроударе. Время и пространство были дискретизи-
рованы в пространственно-временной области с использованием разбросанных узлов.
Пространственно-временная формулировка делает возможным адаптивный анализ в не-
стационарных задачах. Была представлена методика адаптивного перемещения узлов
посредством температурного анализа двумерных элементов фермы. Представлен алго-
ритм, основанный на простом итерационном методе, для решения задачи о гидроударе с
нелинейными граничными условиями. Предложенные схемы использовались для реше-
ния трех задач. Результаты показали возможности метода при решении задач о гидроуда-
ре с изменяющимися механическими свойствами и нелинейными границами. Представ-
ленный подход был сформулирован в векторной форме так, чтобы вся вычислительная
процедура состояла из некоторой матричной алгебры на разреженных матрицах.

Приложение

Здесь представлена матричная формулировка для численного решения уравнений
(1), (2). Для прояснения формулировки все матричные переменные заключены в рам-
ки, векторы показаны жирным шрифтом, а скаляры показаны курсивом. Предположим,
что пространственно-временная область z∗ − t∗ дискретизирована с использованием N
произвольно распределенных узлов, как показано на рис. 1 данной статьи. Значение
неизвестной функции χ на i-м узле с координатами (z∗i, t∗i) показано при помощи χi.
Значение неизвестной функции χk при (z∗k, t∗k), которая не обязательно является узло-
вой точкой (называется точкой коллокации), интерполируется следующим образом:

χk
∼= β0 + β1z∗k + β2t∗k +

B∑
i=1

λiΦ

(
`ik
2rk

)
, (A-1)
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`ik =
√

(z∗k − z∗i)2 + (t∗k − t∗i)2, (A-2)

где β0, β1, β2 и λ1, λ2, . . . , λb — неизвестные коэффициенты, которые будут вычислены
позднее. Предполагается, что только узлы B (B гораздо меньше N), ближайшие к лю-
бой точке коллокации, влияют на χk. Они генерируют опорную область k-й точки кол-
локации (см. рис. 1). Как показано на рис. 1, rk — это расстояние между k-й точкой
коллокации и самым дальним узлом ее локальной области. Функция Φ в уравнении
(A-1) — это некоторая РБФ. Для подгонки кривой использовались различные РБФ
[33, с. 70]. Здесь для Φ используется функция четвертой степени [33, с. 45]:

Φ(d) =
2

3
+

9

2
d2 +

19

3
d3 − 5

2
d4, 0 ≤ d ≤ 1. (A-3)

Полиномы в интерполяционной функции (A-1) обеспечивают воспроизведение линейно-
го поля (C1-согласованность). Сообщается (см. [33, с. 75]), и мы пришли к этому выводу,
что добавление полиномов также повышает точность результатов и снижает чувстви-
тельность параметров формы в РБФ к точности решения. Эта интерполяция согласо-
вана с порядком полиномов, используемых в формулировке, и имеет свойство дельта-
функции Кронекера. Подробно свойства аппроксимации с использованием РБФ обсуж-
дались в [33]. Неизвестные коэффициенты (β0, β1, β2 и λ1, λ2, . . . , λb) для коллокации с
координатами (z∗k, r∗k) получены путем одновременного решения следующей системы
уравнений [33, с. 75–78]:

β0 + β1z∗k + β2t∗k +
B∑
i=1

λiΦ(`ik) = χk
i , i = 1, 2, . . . , B, (A-4)

где χk
i — значение i-й соседней точки коллокации с координатами (z∗k, t∗k). Для получе-

ния неизвестных коэффициентов необходимы еще три уравнения:
B∑
i=1

λi = 0,
B∑
i=1

λiz∗
k
i = 0,

B∑
i=1

λit∗
k
i = 0, (A-5)

где (z∗
k
i , t∗

k
i ) для i = 1, 2, . . . , B — координаты соседних точек k-й коллокации. Теперь мы

имеем B+3 уравнения для получения B+3 неизвестных коэффициентов. Коэффициенты
подставляются в уравнение (A-1) для получения следующего соотношения:

χk
∼= χ̃k =

B∑
i=1

ψk
i χ

k
i , (A-6)

где ψ — функция (z∗, t∗), называемая функцией формы, и ψk
i — значение ψ в i-й соседней

точке k-й коллокации. Предположим, что в области дискретизации имеется M точек
коллокации и N узловых точек (они могут быть равными, как предполагается здесь
N = M). Векторы π̃ и π определяются следующим образом:

π̃ =


χ1

χ2
...
χM

 , π =


χ1

χ2
...
χN

 , (A-7)

где π̃ и π — векторы, содержащие приближенные значения неизвестной функции χ в
точках коллокации и узловых точках соответственно, χi в π обращается к значению
функции χ в i-м узле, тогда как χi в π̃ обращается к значению функции χ в i-й точке
коллокации. Уравнение (A-6) используется для связи π̃ и π следующим образом:
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π̃ =


ψ1,1 ψ1,2 · · · ψ1,N

ψ2,1 ψ2,2 · · · ψ2,N
...

... · · ·
...

ψM,1 ψM,2 · · · ψM,N

 π, (A-8)

где ψi,k для i = 1, 2, . . . , N и k = 1, 2, . . . ,M — значения i-й функции формы в k-й точке
коллокации. Уравнение (A-8) можно переписать в компактной форме как

π̃ = ψ π, (A-9)

M×N -матрица ψ — сильно разреженная матрица из-за небольшого числа узлов в опор-
ной области точек коллокации (B гораздо меньше N ). Работа с разреженными матри-
цами весьма желательна в численных методах ввиду того, что требуется меньше вы-
числений и меньше оперативной памяти. Поэлементные производные матрицы функции

формы относительно z∗ и t∗, а также
∂ ψ

∂t∗
и
∂ ψ

∂z∗
получены из уравнения (A-1). Неиз-

вестные векторы, напор и расход в точках коллокации аппроксимируются следующим
образом:

H̃∗ = ψ H∗, (A-10)

Q̃∗ = ψ Q∗, (A-11)

где H̃∗, Q̃∗,H∗ иQ∗ — векторы, содержащие значенияH∗ иQ∗ во всех точках коллокации
и узловых точках соответственно. Невязки в результате подстановки уравнений (A-10)
и (A-11) в уравнения (5)–(8) следующие:

∂ ψ

∂t∗
H∗ +

c∗
2

g∗
(1./A∗) •

∂ ψ

∂z∗
Q∗ = R1, (A-12)

∂ ψ

∂t∗
Q∗ + g∗A∗ •

∂ ψ

∂z∗
H∗ = R2, (A-13)

ψ1 H∗ −Hb∗ = R3 в точках, где напор известен, (A-14)

ψ2 Q∗ −Qb∗ = R4 в точках, где расход известен, (A-15)

где Hb∗ и Qb∗ — векторы, содержащие граничные значения. Для построения матриц
функций формы для граничных узлов ψ1 и ψ2 те элементы матрицы ψ , которые не
связаны с узлами на границах, заменяются нулями. A∗ — вектор, содержащий площадь
поперечного сечения в точках коллокации. Оператор точечного деления “./” в уравнении
(A-12) обращает каждый элемент A∗. Умножение вектора на матрицу обозначено симво-
лом “•”. Это определяется как произведение матрицы на матрицу, причем диагональная
матрица включает элементы вектора. Пример умножения вектора на матрицу:
a1
a2
...
aM

•

ψ1,1 ψ1,2 · · · ψ1,N

ψ2,1 ψ2,2 · · · ψ2,N
...

... · · ·
...

ψM,1 ψM,2 · · · ψM,N

=


a1 0 · · · 0
0 a2 · · · 0
...

... · · ·
...

0 0 · · · aM



ψ1,1 ψ1,2 · · · ψ1,N

ψ2,1 ψ2,2 · · · ψ2,N
...

... · · ·
...

ψM,1 ψM,2 · · · ψM,N

. (A-16)
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Сумму квадратов невязок J можно записать как

J =
1

2

(
RT

1 R1 + RT
2 R2 + αRT

3 R3 + αRT
4 R4

)
, (A-17)

где T — знак транспонирования. В данном исследовании невязки на границах масштаби-
руются при помощи положительного числа α для применения граничных условий (это то
же самое, что и известный метод штрафов в методе конечных элементов) [34, с. 104–107].
Чем выше значение α, тем лучше будут ограничения [34, с. 105]. Те значения неизвестных
Q∗ иH∗, которые минимизируют J , дают желаемые решения. Они находятся следующим
образом:

∂J

∂H∗
= 0, (A-18)

∂J

∂Q∗
= 0. (A-19)

Соответственно,

∂ ψ
T

∂t∗

(
∂ ψ

∂t∗
H∗+

c∗
2

g∗
(1./A∗) •

∂ ψ

∂z∗
Q∗

)
+g∗A∗ •

∂ ψ
T

∂z∗

(
∂ ψ

∂t∗
Q∗+g∗A∗ •

∂ ψ

∂z∗
H∗

)
+ · · ·+

α ψ1
T
(
ψ1 H∗ −Hb∗

)
= 0, (A-20)

c∗
2

g∗
(1./A∗) •

∂ ψ
T

∂z∗

(
∂ ψ

∂t∗
H∗ +

c∗
2

g∗
(1./A∗) •

∂ ψ

∂z∗
Q∗

)
+ · · ·+

∂ ψ
T

∂t∗

(
∂ ψ

∂t∗
Q∗ + g∗A∗ •

∂ ψ

∂z∗
H∗

)
+ α ψ2

T
(
ψ2 Q∗ −Qb ∗

)
= 0. (A-21)

С использованием уравнений (A-20) и (A-21) систему уравнений можно записать в
матричной форме следующим образом:[

k11 k12

k21 k22

] [
H∗
Q∗

]
=

[
F1

F2

]
, (A-22)

где

k11 =
∂ ψ

T

∂t∗

∂ ψ

∂t∗
+ (g∗A∗)

2 •
∂ ψ

T

∂z∗

∂ ψ

∂z∗
+ α ψ1

T
ψ1 , (A-23)

k12 =
c∗

2

g∗
(1./A∗) •

∂ ψ
T

∂t∗

∂ ψ

∂z∗
+ g∗A∗ •

∂ ψ
T

∂z∗

∂ ψ

∂t∗
, (A-24)

k21 =
c∗

2

g∗
(1./A∗) •

∂ ψ
T

∂z∗

∂ ψ

∂t∗
+ g∗A∗ •

∂ ψ
T

∂t∗

∂ ψ

∂z∗
, (A-25)

k22 =

(
c∗

2

g∗
(1./A∗)

)2

•
∂ ψ

T

∂z∗

∂ ψ

∂z∗
+
∂ ψ

T

∂t∗

∂ ψ

∂t∗
+ α ψ2

T
ψ2 , (A-26)
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F1 = α ψ1
T
Hb∗, (A-27)

F2 = α ψ2
T
Qb∗. (A-28)
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