УДК 539.3

ВЛИЯНИЕ КРАЕВЫХ УСЛОВИЙ НА БЕЗРАЗМЕРНЫЕ СОБСТВЕННЫЕ ЧАСТОТЫ ПЕРЕКРЕСТНО АРМИРОВАННОЙ СЛОИСТОЙ КОМПОЗИТНОЙ БАЛКИ

А. Ф. А. Алгарай, Х. Джун, И.-Э. М. Махди*

Колледж машиностроения и электротехники Северо-Восточного университета леса, Харбин, Китай

* Университет долины Нила, Атбара, Судан

E-mails: algarray7@yahoo.com, huajun11@yahoo.com, imadmah@gmail.com

Изучено влияние способа закрепления торцов на собственные частоты колебаний слоистой балки, изготовленной из перекрестно армированного композита. С использованием энергетического подхода и метода конечных элементов вычислены собственные частоты. Рассмотрены балки с различными краевыми условиями. Для каждого способа закрепления торцов рассмотрен случай как подвижных в осевом направлении торцов, так и неподвижных. Проведено сравнение полученных результатов численных расчетов с известными данными. Установлено, что чем меньше у балки степеней свободы, тем больше собственные частоты поперечных колебаний. Показано, что собственные частоты продольных колебаний балок с подвижными торцами одинаковы для всех типов закрепления торцов, поскольку моды продольных колебаний формируются движениями в продольном направлении.

Ключевые слова: слоистая балка, свободные колебания, метод конечных элементов, способы закрепления торцов балки.

DOI: 10.15372/PMTF20170617

Введение. Слоистые балки, изготовленные из перекрестно армированного композита, используются в автомобиле-, корабле- и самолетостроении. Исследование собственных частот балок из композитных материалов является актуальной задачей, поскольку знание собственных частот позволяет избежать появления резонанса в конструкциях при воздействии на них динамических нагрузок. Как правило, вычисляются безразмерные собственные частоты, поскольку полученные в этом случае результаты можно использовать для балок любых размеров. Одним из параметров, влияющих на собственные колебания балки, является способ закрепления ее торцов. В работе [1] получено точное решение задачи о собственных колебаниях слоистой композитной балки несимметричного строения. В [2] с использованием теории поперечного сдвига высшего порядка и метода конечных элементов исследованы свободные колебания балки, изготовленной из композита, армированного волокнами. Влияние направления армирования композита волокнами на собственные частоты колебаний балки изучено в работе [3]. В [4, 5] выполнен анализ свободных колебаний балки из перекрестно армированного композита и балки из многослойного композита с различной ориентацией слоев. Исследованы свободные колебания таких балок при различных способах закрепления торцов. В [6, 7] для решения динамических задач для композитных балок предложен трехузловой конечный элемент с синусоидальными функциями формы. В [8] с использованием гипотезы ломаной и синусоидальной модели проведено исследование колебаний композитной балки. В [9] предложены иерархические балочные конечные элементы, в которых смещения являются функциями координат поперечного сечения. В [10] построены переменные кинематические балочные элементы, сборка которых проводится с использованием метода Арлекина. Собственные колебания свободно опертой балки из перекрестно армированного композита исследовались в работе [11] с использованием различных неклассических моделей высшего порядка. В [12] проведено сравнение результатов решения задач о свободных колебаниях слоистых композитных балок, полученных с помощью различных теорий, учитывающих поперечный сдвиг. В [13] изучено влияние ориентации волокон и способа укладки слоев на собственные частоты крутильных колебаний балки из слоистого композита. В [14] исследовались свободные колебания композитных балок различной геометрии при различных краевых условиях и схемах укладки слоев. В [15] изучалось влияние размеров областей расслоения, имеющихся в балке из перекрестно армированного композита, на характер ее колебаний.

1. Материал и геометрия балки. Проведены численные расчеты для слоистой балки, материалом слоев которой является графитоэпоксидный композит AS/3501-6, имеющий следующие механические характеристики: модули упругости $E_1 = 145 \ \Gamma H/m^2$, $E_2 = 9.6 \ \Gamma H/m^2$, модули сдвига $G_{12} = 4.1 \ \Gamma H/m^2$, $G_{13} = 4.1 \ \Gamma H/m^2$, $G_{23} = 3.4 \ \Gamma H/m^2$, коэффициент Пуассона $\nu = 0.3$, плотность $\rho = 1520 \ \mathrm{kr/m^3}$. Геометрия и размеры слоистой балки приведены на рис. 1.

2. Математическая формулировка задачи. Для продольных и поперечных смещений принимается следующая аппроксимация:

$$U(x, z, t) = u(x, t) + z\varphi(x, t), \qquad W(x, z, t) = w(x, t).$$

Здесь u, w — продольное и поперечное смещения срединной плоскости балки; z — расстояние от срединной плоскости до слоя; φ — угол поворота поперечного сечения балки; t — время. Деформации вычисляются по формулам

$$\varepsilon_1 = \frac{\partial U}{\partial x} = \frac{\partial u}{\partial x} + z \frac{\partial \varphi}{\partial x}, \qquad \varepsilon_5 = \frac{\partial W}{\partial x} + \frac{\partial U}{\partial z} = \frac{\partial w}{\partial x} + \varphi,$$

где ε_1 — продольная деформация; ε_5 — деформация поперечного сдвига. Связь между

Рис. 1. Геометрия и размеры слоистой балки

Рис. 2. Трехузловой конечный элемент с девятью степенями свободы и функции формы: 1–3 — номера узлов

напряжениями и деформациями записывается в виде

$$\{\sigma_i\} = [\bar{C}_{ij}]\{\varepsilon_i\},\$$

где

$$\{\sigma\}^{\mathrm{T}} = \{\sigma_1 \ \sigma_5\}, \qquad [\bar{C}_{ij}] = \begin{bmatrix} \bar{C}_{11} & 0\\ 0 & \bar{C}_{55} \end{bmatrix}, \qquad \{\varepsilon\}^{\mathrm{T}} = [\varepsilon_1 \ \varepsilon_5].$$

Выражения для констант упругости $[\bar{C}_{11}]$ и $[\bar{C}_{55}]$ имеют следующий вид:

$$\bar{C}_{11} = C_{11} \cos^4 \theta + C_{22} \sin^4 \theta + 2(C_{12} + 2C_{66}) \sin^2 \theta \cos^2 \theta,$$
$$\bar{C}_{55} = C_{44} \sin^2 \theta + C_{55} \cos^2 \theta.$$

Здесь $C_{66} = G_{12}$; $C_{44} = G_{23}$; $C_{55} = G_{13}$; $C_{12} = \nu_{12}C_{22} = \nu_{21}C_{11}$.

3. Конечно-элементная модель. Выражение для энергии деформации конечного элемента (рис. 2) записывается в виде

$$U_s = \frac{1}{2} \int_e \{\varepsilon\}^{\mathrm{T}} \{\sigma\} \, dV,\tag{1}$$

где $dV = b \, dx \, dz$.

Выражение для кинетической энергии записывается следующим образом:

$$T = \frac{1}{2} b\rho \int_{e} \left(\frac{\partial^2 W}{\partial t^2} W + \frac{\partial^2 U}{\partial t^2} U \right) dx \, dz.$$
⁽²⁾

Степенями свободы в каждом узле конечного элемента являются продольное смещение u, прогиб w и угол поворота φ . Смещения внутри элемента записываются через их значения в узлах и функции формы:

$$[u, w, \varphi] = \sum_{i=1}^{i=3} [N_i u_i, N_i w_i, N_i \varphi_i].$$

Функции формы N_i являются полиномами второй степени:

$$N_i = a_i + b_i x + c_i x^2$$
 $(i = 1, 2, 3),$

константы a_i, b_i, c_i вычисляются из условий

$$N_i = \begin{cases} 1, & x = x_i, \\ 0, & x \neq x_i \end{cases} \quad (i = 1, 2, 3).$$

С использованием уравнений (1), (2) для элемента можно получить соответственно матрицу жесткости $[K]^e$ и матрицу массы $[M]^e$, которые используются при построении глобальных матриц жесткости и массы:

$$[K] = \sum_{n=1}^{N} [K]^{e}, \qquad [M] = \sum_{n=1}^{N} [M]^{e}$$

(*N* — число конечных элементов).

Задавались следующие краевые условия: 1) защемленный край — свободный край (3C); 2) шарнирное закрепление — шарнирное закрепление (ШШ); 3) защемленный край — защемленный край (33); 4) шарнирное закрепление — защемленный край (ШЗ); 5) шарнирное закрепление — свободный край (ШС); 6) свободный край — свободный край (CC). Рассматривались балки с неподвижными и подвижными в осевом направлении торцами.

После преобразования глобальных матриц жесткости и массы с учетом краевых условий получаем уравнение для определения безразмерных собственных частот

$$|[M]^{-1}[K] - \omega^2 I| = 0, \tag{3}$$

где I — единичная матрица; ω — безразмерная собственная частота. Собственные значения уравнения (3) вычислялись с использованием пакета MATLAB.

4. Сравнение результатов, полученных с использованием предложенного алгоритма, с известными данными. Ниже проводится сравнение собственных частот, полученных с использованием алгоритма, предложенного в данной работе, с собственными частотами, вычисленными в работах [1, 2].

В табл. 1 приведены значения безразмерных собственных частот $\bar{\omega} = \omega L^2 \sqrt{\rho/(E_1 h^2)}$ для балки с симметричным [0/90/90/0] перекрестным армированием при L/h = 10 и различных краевых условиях. Торцы балки считаются неподвижными. Для балки с обоими шарнирно закрепленными торцами различие значений основной частоты не превышает 0,16 %, для балки с обоими защемленными торцами и балки, один торец которой защемлен, а другой шарнирно закреплен, — 0,54 %. При всех рассмотренных краевых условиях различие значений частот увеличивается с увеличением номера моды, но не превышает 1,4 % для седьмой моды.

В табл. 2 приведены значения безразмерной частоты $p = \omega L^2 \sqrt{I_1/D}$ для слоистой балки несимметричного [90/0] строения с шарнирно закрепленными и защемленными торцами. В выражении для p величины I_1 и D определены следующим образом:

$$I_1 = \rho bh, \qquad D = \int_{-h/2}^{h/2} C'_{11} z^2 b \, dz.$$

В табл. 2 приведены результаты, полученные с использованием алгоритма, предложенного в данной работе, и результаты, полученные в [1]. Для пластины как с подвижными, так и с неподвижными шарнирно закрепленными торцами различие частот колебаний для основных мод не превышает 0,6 %, для высших мод — 1,8 %. Для мод с преобладающими продольными колебаниями это различие не превышает 0,7 %. Такое же различие частот имеет место в случае балки с защемленными торцами.

Таблица 1

	$\bar{\omega}$					
Номер моды	ШШ		3C		33	
	Данные настоящей работы	Данные [1]	Данные настоящей работы	Данные [1]	Данные настоящей работы	Данные [1]
1	2,3157	2,3194	0,8866	0,8819	$3,\!6855$	3,7576
2	6,9813	7,0029	4,1062	4,0259	7,7244	7,8718
3	12,0040	12,0370	8,9536	9,1085	$12,\!3810$	$12,\!5730$
4	17,0100	17,0150	$11,5040^{*}$	$12,\!1930^*$	$17,\!1920$	$17,\!3730$
5	22,0150	21,9070	$13,\!9240$	14,0800	$22,\!1190$	22,2000
6	$23,0070^{*}$	$23,0070^{*}$	$18,\!9800$	$18,\!9800$	$23,\!0070^*$	$23,\!0070^*$
7	27,0940	27,0940	$24,\!0370$	$24,\!0370$	$27,\!1250$	$27,\!1250$

Значения безразмерных	собственных частот $ar{\omega}$ для балки с неподвижными торцами
с симметричным	[0/90/90/0] перекрестным армированием ($L/h=10$)

* Моды, в которых доминируют продольные колебания.

Таблица 2

Безразмерные частоты pдля слоистой балки несимметричного строения [90/0] с шарнирно закрепленными и защемленными торцами при L/h=10

	p								
Номер моды	ШШ				33				
	Неподвижные торцы		Подвижные торцы		Неподвижные торцы		Подвижные торцы		
	Данные настоящей работы	Данные [1]	Данные настоящей работы	Данные [1]	Данные настоящей работы	Данные [1]	Данные настоящей работы	Данные [1]	
1	8,1021	8,1439	6,1110	6,1459	12,0700	12,141	12,070	12,141	
2	$21,\!5400$	21,6610	21,7800	21,9020	28,3100	28,473	28,318	$28,\!482$	
3	$43,\!6190$	43,7780	42,5270	42,6980	47,9580	48,141	47,960	$48,\!138$	
4	63,7270	63,7870	65,5620	$65,\!6580$	$69,\!4730$	69,449	$69{,}538$	69,513	
5	88,8200	89,1500	89,7430	86,1260	$92,\!4290$	91,743	$92,\!156$	$91,\!518$	
6	$89,9240^{*}$	$89,3130^{*}$	$102,\!2200^*$	$102,7500^*$	$102,\!1500^*$	$102,\!660^*$	$104,740^{*}$	$105,160^{*}$	
7	$116,\!2700$	114,3000	114,7900	112,8000	116,7000	$114,\!620$	$116,\!660$	$114,\!620$	

* Моды, в которых преобладают продольные колебания.

Таблица 3

Безразмерные частоты колебаний $ar{\omega}$ для слоистой балки симметричного строения	7 $[0/90/90/0]$,
один торец которой защемлен, а другой свободен, при $L/h=15$	

TT	$\bar{\omega}$				
помер моды	Данные настоящей работы	Данные [2]			
1	0,9238	0,924			
2	4,8886	4,985			
3	11,4556	11,832			
4	$17,2550^{*}$				
5	18,8481	19,573			
6	26,7793	27,720			

* Моды, в которых преобладают продольные колебания.

Таблица 4

Безразмерные собственные частоты $ar{\omega}=\omega$	$\sqrt{ ho L^4/(E_1h^2)}$ для слоистой балки
симметричного строения $[90/-90/-90/90]$ с	неподвижными торцами при $L/h=10$

Номер	$\bar{\omega}$						
моды	3C	IIIIII	33	ШЗ	ШC	CC	
1	0,2597	0,7224	1,5544	1,1020	1,1184	1,6077	
2	1,5522	2,7525	3,9654	$3,\!3519$	$3,\!4324$	4,1694	
3	$4,0539^{*}$	5,7774	$7,\!1377$	$6,\!4646$	$4,0539^{*}$	7,5785	
4	4,0677	$8,1077^{*}$	$8,1077^{*}$	$8,1077^{*}$	$6,\!6580$	$8,1077^{*}$	
5	$7,\!3503$	$9,\!4753$	10,8006	10,1515	$10,\!4868$	11,5233	
6	$11,\!1503$	$13,\!5995$	14,7896	14,2085	$12,1616^*$	15,7969	
7	$12,1616^*$	$16,2155^{*}$	$16,2155^{*}$	$16,2155^{*}$	$14,\!6913$	$16,2155^{*}$	
8	$15,\!2783$	$17,\!9847$	$18,\!9972$	18,5027	19,1205	20,2606	
9	$19,\!6134$	22,5259	$23,\!3543$	22,9488	$20,2694^*$	$24,3234^*$	
10	$20,2694^{*}$	$24,3234^{*}$	$24,\!3234^*$	$24,\!3234^*$	$23,\!6776$	$24,\!8245$	

* Моды, в которых преобладают продольные колебания.

Проведено также сравнение результатов, полученных с использованием предложенного алгоритма, с результатами, полученными в работе [2]. В табл. З приведены значения безразмерных частот колебаний $\bar{\omega} = \omega L^2 \sqrt{\rho/(E_1 h^2)}$ для слоистой оболочки симметричного [0/90/90/0] строения (углепластик), один торец которой защемлен, а другой свободен, при L/h = 15. В работе [2] использована теория оболочек, в которой учитываются деформации сдвига второго порядка, в то время как в данной работе учитываются деформации сдвига первого порядка. Для основной моды колебаний различие частот колебаний, вычисленных с использованием алгоритма, предложенного в данной работе, и частот, вычисленных в работе [2], не превышает 0,03 %. С увеличением номера моды различие увеличивается, но не превышает 3,6 % для шестой моды.

5. Результаты вычислений и их обсуждение. Получены значения собственных частот для первых 10 мод колебаний слоистой балки с неподвижными торцами (движение торцов в продольном направлении отсутствует) (табл. 4) и балки с подвижными торцами (табл. 5). Как правило, частота колебаний балки с меньшим числом степеней свободы больше. Однако из приведенных результатов следует, что балка с двумя свободными

Таблица 5

Номер	$\bar{\omega}$						
моды	3C	ШШ	33	ШЗ	ШC	$\mathbf{C}\mathbf{C}$	
1	0,2597	0,7224	1,5544	1,1020	1,1184	$1,\!6077$	
2	1,5522	2,7525	3,9654	3,3519	$3,\!4324$	4,1694	
3	4,0677	5,7774	$7,\!1377$	6,4646	$6,\!6580$	7,5785	
4	7,3503	$8,1077^{*}$	$8,1077^{*}$	$8,1077^{*}$	$8,1077^{*}$	$8,1077^{*}$	
5	$8,1077^{*}$	$9,\!4753$	10,8006	10,1515	$10,\!4868$	11,5233	
6	$11,\!1503$	13,5995	14,7896	14,2085	$14,\!6913$	15,7969	
7	$15,\!2783$	$16,2155^{*}$	$16,2155^{*}$	$16,2155^{*}$	$16,2155^{*}$	$16,2155^{*}$	
8	$16,\!2155^*$	17,9847	$18,\!9972$	18,5027	19,1205	20,2606	
9	$19,\!6134$	22,5259	$23,\!3543$	22,9488	$23,\!6776$	$24,3234^*$	
10	24,0758	$24,3234^{*}$	$24,3234^*$	$24,3234^{*}$	$24,3234^{*}$	$24,\!8245$	

Безразмерные собственные частоты $\bar{\omega} = \omega \sqrt{\rho L^4/(E_1 h^2)}$ для слоистой балки симметричного строения [90/-90/-90/90] с подвижными торцами при L/h = 10

* Моды, в которых преобладают продольные колебания.

Рис. 3. Моды поперечных колебаний балки симметричного строения со свободными торцами при L/h = 10:

1 — первая мода, 2 — вторая мода, 3 — третья мода, 4 — смещение, соответствующее движению балки как жесткого целого

торцами и балка с одним свободным и другим шарнирно опертым торцами имеют более высокие частоты, чем балки с торцами, закрепленными другими способами, хотя, по-видимому, указанные выше балки имеют больше степеней свободы. Это объясняется тем, что для балок с торцами, закрепленными двумя указанными выше способами, первая мода обращается в нуль и фактически заменяется второй модой. Для балок с торцами, закрепленными таким способом, основная мода представляет собой прямую линию (рис. 3). Такая форма моды соответствует движению балки как жесткого целого, и колебания, соответствующие такой моде, отсутствуют.

Из результатов, приведенных в табл. 4, 5, также следует, что движение торцов балки в продольном направлении не оказывает влияния на безразмерные собственные частоты колебаний поперечных мод, поскольку эти моды формируются только в результате движения в поперечном направлении. Собственные частоты продольных мод колебаний одинаковы для всех способов закрепления как при наличии движения торцов в продольном направлении, так и при отсутствии такого движения, поскольку указанные моды формируются только движениями в продольном направлении. Следует отметить, что значения безразмерных собственных частот продольных колебаний для балок, один торец которых защемлен, а другой свободен, и балок, один торец которых шарнирно закреплен, а другой свободен, равны.

Заключение. В работе исследовано влияние различных способов закрепления торцов на собственные частоты колебаний композитной слоистой балки. Задача решена с использованием метода конечных элементов. Исследованы различные способы закрепления торцов балки как при наличии их движения в продольном направлении, так и при его отсутствии. Установлено, что балка с меньшим числом степеней свободы имеет более высокие частоты колебаний. Однако балки с двумя свободными торцами и балки с одним шарнирно закрепленным торцом и со вторым свободным торцом имеют более высокие частоты, чем балки с торцами, закрепленными другими способами, хотя, по-видимому, указанные выше балки имеют больше степеней свободы. Продольные движения торцов балки не оказывают влияния на поперечные моды колебаний, поскольку эти моды формируются только в результате движения в поперечном направлении. Собственные частоты продольных мод одинаковы для балок с подвижными торцами в продольном направлении при различных способах их закрепления, поскольку продольные моды формируются движениями только в продольном направлении.

ЛИТЕРАТУРА

- Abramovich H., Livshits A. Free vibrations of non-symmetric cross-ply laminated composite beams // J. Sound Vibrat. 1994. V. 176, N 5. P. 597–612.
- 2. Marur S., Kant T. Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modelling // J. Sound Vibrat. 1996. V. 194, N 3. P. 337–351.
- 3. Njuguna J., Su H., Cheung C. W., Banerjee J. R. The influence of ply orientation on the free vibration of composite beams // Proc. of the Intern. conf. "Composite systems macrocomposites, microcomposites, nanocomposites", Sydney (Australia), 21–25 July 2002. S. l., 2002.
- Aydogdu M. Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method // Intern. J. Mech. Sci. 2005. V. 47, N 11. P. 1740–1755.
- Aydogdu M. Free vibration analysis of angle-ply laminated beams with general boundary conditions // J. Reinforced Plastics Composites. 2006. V. 25, N 15. P. 1571–1583.
- Vidal P., Polit O. A family of sinus finite elements for the analysis of rectangular laminated beams // Composite Structures. 2008. V. 84, N 1. P. 56–72.
- 7. Vidal P., Polit O. Vibration of multilayered beams using sinus finite elements with transverse normal stress // Composite Structures. 2010. V. 92, N 6. P. 1524–1534.
- 8. Vidal P., Polit O. A sine finite element using a zig-zag function for the analysis of laminated composite beams // Composites. B: Engineering. 2011. V. 42, N 6. P. 1671–1682.
- Carrera E., Giunta G., Nali P., Petrolo M. Refined beam elements with arbitrary crosssection geometries // Comput. Structures. 2010. V. 88, N 5. P. 283–293.
- 10. Biscani F., Giunta G., Belouettar S., et al. Variable kinematic beam elements coupled via Arlequin method // Composite Structures. 2011. V. 93, N 2. P. 697–708.
- 11. Giunta G., Biscani F., Belouettar S., et al. Free vibration analysis of composite beams via refined theories // Composites. B: Engineering. 2013. V. 44, N 1. P. 540–552.

- Li J., Wu Zhen, Kong Xiangshao, Wu Weiguo. Comparison of various shear deformation theories for free vibration of laminated composite beams with general lay-ups // Composite Structures. 2014. V. 108. P. 767–778.
- Hassan G. A., Fahmy M. A., Goda I. M. The effect of fiber orientation and laminate stacking sequences on the torsional natural frequencies of laminated composite beams // J. Mech. Design Vibrat. 2013. V. 1, N 1. P. 20–26.
- 14. Pagani A., Carrera E., Boscolo M., Banerjee J. R. Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions // Composite Structures. 2014. V. 110. P. 305–316.
- Torabi K., Shariati-Nia M., Heidari-Rarani M. Experimental and theoretical investigation on transverse vibration of delaminated cross-ply composite beams // Intern. J. Mech. Sci. 2016. V. 115. P. 1–11.

Поступила в редакцию 8/XII 2016 г., в окончательном варианте — 2/III 2017 г.