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ские свойства, а именно, устойчивость (с соответствующей дискретной энергетической нормой) и оценки
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We present in this work a convergence analysis of a Finite Difference method for solving on quadrilateral
meshes 2D-flow problems in homogeneous porous media with a full permeability tensor. We start with the
derivation of the discrete problem by using our finite difference formula for a mixed derivative of second order.
A result of existence and uniqueness of the solution for that problem is given via the positive definiteness of
its associated matrix. Their theoretical properties, namely, stability on the one hand (with the associated
discrete energy norm) and error estimates (with L2-norm, relative L2-norm and L∞-norm ) are investigated.
Numerical simulations are shown.
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1. Введение и модельная задача

Математический анализ метода конечных разностей в задачах двумерных и трехмер-
ных течений с полным тензором проницаемости всегда представляет собой сложную про-
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блему (см., например, [1–3]). Именно поэтому появились некоторые численные методы,
основанные на конечно-разностном подходе, такие как миметические методы конечных
разностей, для устранения ограничений и недостатков классического метода конечных
разностей (см. [4–10] и имеющиеся там ссылки). В настоящее время некоторые авто-
ры занимаются разработкой методов конечных разностей для приложений в нескольких
областях, сохраняя при этом классический подход (см., например, [11–20]). Наша рабо-
та является частью этого подхода, поскольку целью является математический анализ в
терминах устойчивости и оценки ошибки классического подхода конечных разностей на
задачах двумерных течений с полной матрицей диффузии в однородной пористой среде
на прямоугольной сетке.

Для представления численной схемы рассмотрим двумерную задачу диффузии для
поиска функции, удовлетворяющей следующему уравнению в частных производных, свя-
занному с граничным условием Дирихле:

−div(D gradu) = f в Ω, (1.1)

u = 0 на Γ, (1.2)

где f — заданная функция, Ω — заданная открытая квадратная область, Γ — ее гра-
ница, D — полная симметричная постоянная матрица, описывающая пространственное
изменение коэффициента диффузии, которая удовлетворяет условно однородной эллип-
тичности, т. е.

∃ γmin, γmax ∈ R∗+, такие что ∀ ξ ∈ R2, ξ 6= 0,

γmin|ξ|2 ≤ ξ>Dξ ≤ γmax|ξ|2,
(1.3)

где |·| обозначает евклидову норму в R2, Dij — компоненты D.
Статья построена следующим образом: в пункте 2 дается конечно-разностная фор-

мулировка модельной задачи. В п. 3 доказывается существование и единственность ре-
шения дискретной задачи. В п. 4 исследуются теоретические свойства (устойчивость и
оценки ошибки в удобных дискретных нормах) решения дискретной задачи. Пункт 5
посвящен численной проверке нашего метода на тестовой задаче, сформулированной в
виде (1.1), (1.2), где представлены скорости сходимости для L2-нормы, относительной
L2-нормы и L∞-нормы.

2. Конечно-разностная формулировка модельной задачи

2.1. Сетка пространственной области

Для ясности предположим, что пространственная область Ω — это область ]0, 1[×]0, 1[.
Предположим, что Ω покрыта квадратной основной сеткой, обозначаемой P, с размером
ячейки h =

1

N
, где N — заданное положительное целое число. С другой стороны, пусть

Kij обозначает сеточный блок, определяемый следующим образом: Kij =
[
xi− 1

2
, xi+ 1

2

]
×[

yj− 1
2
, yj+ 1

2

]
, где xi+ 1

2
= xi− 1

2
+ h, yj+ 1

2
= yj− 1

2
+ h для i, j = 1, . . . , N при x 1

2
= y 1

2
= 0.

Согласно вариационной теории линейных эллиптических задач (см., например, [21]),
система (1.1), (1.2) имеет единственное решение φ в пространстве Соболева H1

0 при пред-
положении (1.3) и условии, что f ∈ L2(Ω).
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Замечание 2.1. Предположим, что в дальнейшем

(i) решение (1.1), (1.2) является достаточно регулярным для наших целей;

(ii) дискретные неизвестные считаются приемлемыми аппроксимациями в центрах бло-
ков основной сетки (xi, yj), обозначаемыми {ui,j}1≤i,j≤N ;

(iii) точное решение φ уравнений (1.1), (1.2) в точках (xi, yj) обозначается φi,j , где xi =
1
2

(
xi− 1

2
+ xi+ 1

2

)
и yi = 1

2

(
yj− 1

2
+ yj+ 1

2

)
.

2.2. Дискретная задача

Записав уравнение баланса (1.1) в каждом центре сеточного блока Kij для 1 ≤ i,
j ≤ N , получим

−div
(
D gradφ(xi, yj)

)
= f(xi, yj), (2.1)

что эквивалентно

−D11
∂2φ

∂x2
(xi, yj)− 2D12

∂2φ

∂x∂y
(xi, yj)−D22

∂2φ

∂y2
(xi, yj) = f(xi, yj). (2.2)

Благодаря классическим формулам конечных разностей мы имеем следующие аппрок-
симации:

∂2φ

∂x2
(xi, yj) =

1

h2

[
φi−1,j − 2φi,j + φi+1,j

]
+O

(
h2
)
, (2.3)

∂2φ

∂y2
(xi, yj) =

1

h2

[
φi,j+1 − 2φi,j + φi,j−1

]
+O

(
h2
)
, (2.4)

∂2φ

∂x∂y
(xi, yj) =

1

4h2

[
φi+1,j+1 − φi+1,j−1 − φi−1,j+1 + φi−1,j−1

]
+O

(
h2
)
. (2.5)

Путем введения соотношений (2.3)–(2.5) в (2.2), и учитывая замечание 2.1, мы получим
следующую дискретную задачу:

D11[ui,j − ui−1,j ] +D11[ui,j − ui+1,j ] +D22[ui,j − ui,j−1] +D22[ui,j − ui,j+1]−

1

2
D12[ui+1,j+1−ui+1,j−1]+

1

2
D12[ui−1,j+1−ui−1,j−1]=h2fi,j ∀ 1 ≤ i, j ≤ N (2.6)

с
ui,0 = u0,j = ui,N+1 = uN+1,j = 0 ∀ 1 ≤ i, j ≤ N, (2.7)

которые получаются из граничных условий (1.2) и где

fi,j = f(xi, yj) ∀ 1 ≤ i, j ≤ N.

3. Существование и единственность решения
дискретной задачи

Предложение 3.1. Матрица, связанная с дискретной задачей (2.6), (2.7), является
симметричной и положительно определенной.
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Доказательство. Симметричная структура матрицы очевидна. Умножение (2.6) на
ui,j и суммирование для i, j ∈ {1, . . . , N} с использованием обозначений (2.7) приводит
к следующим соотношениям:

D11

∑
0≤i≤N,
1≤j≤N

[
ui+1,j − ui,j

]2
+D22

∑
1≤i≤N,
0≤j≤N

[
ui,j+1 − ui,j

]2
+

1

2
D12

∑
1≤i≤N,
1≤j≤N

[
ui+1,j − ui−1,j

][
ui,j+1 − ui,j−1

]
=

∑
1≤i≤N,
1≤j≤N

h2ui,jfi,j . (3.1)

В дальнейшем LHS будет обозначать левую часть, а RHS правую часть уравне-
ния (3.1). LHS можно записать в виде

LHS = LHS1 + LHS2 + LHS3 + LHS4, (3.2)

где

LHS1 =
1

4

∑
1≤i≤N−1,
1≤j≤N−1

{
D11[ui+1,j−ui,j ]2+2D12[ui+1,j−ui,j ][ui,j+1−ui,j ]+D22[ui,j+1−ui,j ]2

}
+

1

4

∑
1≤i≤N−1,

2≤j≤N

{
D11[ui+1,j−ui,j ]2+2D12[ui+1,j−ui,j ][ui,j−ui,j−1]+D22[ui,j−ui,j−1]2

}
+

1

4

∑
2≤i≤N,

1≤j≤N−1

{
D11[ui,j−ui−1,j ]

2+2D12[ui,j−ui−1,j ][ui,j+1−ui,j ]+D22[ui,j+1−ui,j ]2
}

+

1

4

∑
2≤i≤N,
2≤j≤N

{
D11[ui,j−ui−1,j ]

2+2D12[ui,j−ui−1,j ][ui,j−ui,j−1]+D22[ui,j−ui,j−1]2
}
,

LHS2 =
1

4

∑
1≤i≤N−1

{
D11[ui+1,N − ui,N ]2 − 2D12ui,N [ui+1,N − ui,N ] +D22u

2
i,N

}
+

1

4

∑
1≤i≤N−1

{
D11[ui+1,1 − ui,1]2 + 2D12ui,1[ui+1,1 − ui,1] +D22u

2
i,1

}
+

1

4

∑
2≤i≤N

{
D11[ui,N − ui−1,N ]2 − 2D12ui,N [ui,N − ui−1,N ] +D22u

2
i,N

}
+ (3.3)

1

4

∑
2≤i≤N

{
D11[ui,1 − ui−1,1]2 + 2D12ui,1[ui,1 − ui−1,1] +D22u

2
i,1

}
,

LHS3 =
1

4

∑
1≤j≤N−1

{
D11u

2
N,j − 2D12uN,j [uN,j+1 − uN,j ] +D22[uN,j+1 − uN,j ]2

}
+

1

4

∑
2≤j≤N

{
D11u

2
N,j − 2D12uN,j [uN,j − uN,j−1] +D22[uN,j − uN,j−1]2

}
+

1

4

∑
1≤j≤N−1

{
D11u

2
1,j + 2D12u1,j [u1,j+1 − u1,j ] +D22[u1,j+1 − u1,j ]

2
}

+
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1

4

∑
2≤j≤N

{
D11u

2
1,j + 2D12u1,j [u1,j − u1,j−1] +D22[u1,j − u1,j−1]2

}
,

LHS4 =
1

4
(D11 +D22 + 2D12)u2

1,1 +
1

4
(D11 + 2D22 + 2D12)u2

N,N +

1

4
(D11 +D22 − 2D12)u2

1,N +
1

4
(D11 +D22 − 2D12)u2

N,1 +

1

2
D11

∑
1≤j≤N

{
u2

1,j + u2
N,j

}
+

1

2
D22

∑
1≤i≤N

{
u2
i,1 + u2

i,N

}
.

Благодаря соотношению (1.3), мы имеем следующие неравенства:

LHS1 ≥ 1

4
γmin

∑
1≤i≤N−1,
1≤j≤N−1

{
[ui+1,j − ui,j ]2 + [ui,j+1 − ui,j ]2

}
+

1

4
γmin

∑
1≤i≤N−1,

2≤j≤N

{
[ui+1,j − ui,j ]2 + [ui,j − ui,j−1]2

}
+

1

4
γmin

∑
2≤i≤N,

1≤j≤N−1

{
[ui,j − ui−1,j ]

2 + [ui,j+1 − ui,j ]2
}

+

1

4
γmin

∑
2≤i≤N,
2≤j≤N

{
[ui,j − ui−1,j ]

2 + [ui,j − ui,j−1]2
}
, (3.4)

LHS2 ≥ 1

4
γmin

∑
1≤i≤N−1

{
[ui+1,N − ui,N ]2 + u2

i,N

}
+

1

4
γmin

∑
1≤i≤N−1

{
[ui+1,1 − ui,1]2 + u2

i,1

}
+

1

4
γmin

∑
2≤i≤N

{
[ui,N − ui−1,N ]2 + u2

i,N

}
+

1

4
γmin

∑
2≤i≤N

{
[ui,1 − ui−1,1]2 + u2

i,1

}
, (3.5)

LHS3 ≥ 1

4
γmin

∑
1≤j≤N−1

{
u2
N,j + [uN,j+1 − uN,j ]2

}
+

1

4
γmin

∑
2≤j≤N

{
u2
N,j + [uN,j − uN,j−1]2

}
+

1

4
γmin

∑
1≤j≤N−1

{
u2

1,j + [u1,j+1 − u1,j ]
2
}

+

1

4
γmin

∑
2≤j≤N

{
u2

1,j + [u1,j − u1,j−1]2
}
. (3.6)

Объединив соотношения (3.2)–(3.6), получаем
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LHS ≥ γmin

∑
1≤i≤N,
1≤j≤N

{
[ui+1,j − ui,j ]2 + [ui,j+1 − ui,j ]2

}
+

1

4
(D11 +D22 + 2D12 − 2γmin)(u2

1,1 + u2
N,N ) +

1

4
(D11 +D22 − 2D12 − 2γmin)(u2

1,N + u2
N,1) +

1

2
(D11 + γmin)

∑
1≤j≤N

u2
1,j +

1

2
(D11 − γmin)

∑
1≤j≤N

u2
N,j +

1

2
(D22 + γmin)

∑
1≤i≤N

u2
i,1 +

1

2
(D22 − γmin)

∑
1≤i≤N

u2
i,N . (3.7)

Доказательство завершено.

Замечание 3.1. Симметричная матрица D является положительно определенной, по-
этому

i) D11 > γmin, D22 > γmin,

ii) D11 +D22 + 2D12 − 2γmin > 0,

iii) D11 +D22 − 2D12 − 2γmin > 0.

Вследствие замечания 3.1 неравенство (3.7) принимает вид

LHS ≥ γ‖uh‖21,h, (3.8)

где
‖uh‖21,h =

∑
0≤i≤N,
0≤j≤N

{
[ui+1,j − ui,j ]2 + [ui,j+1 − ui,j ]2

}
(3.9)

при uN+1,j = u0,j = ui,0 = ui,N+1 = 0 для i, j ∈ {0, . . . , N} и γ =
1

2
γmin. Отсюда следует,

что положительная определенность матрицы доказана.

Предложение 3.2 (Существование и единственность). Дискретная задача, состоящая
в том, чтобы найти {ui,j}1≤i, j≤N , такие что уравнения (2.6), (2.7) удовлетворяются,
имеет единственное решение.

Доказательство. Согласно предположению 3.1 матрица, соответствующая дискретной
задаче (2.6), (2.7), является симметричной и положительно определенной. Следователь-
но, эта дискретная задача имеет единственное решение.

Замечание 3.2. Дискретная задача (2.6) удовлетворяет дискретному принципу макси-

мума, если ∂2φ

∂x∂y
≤ 0 в области Ω.

4. Устойчивость слабого приближенного решения

4.1. Слабое приближенное решение

Начнем с рассмотрения основной сетки P. Элементы P состоят из квадратов K, пол-
ностью вложенных в Ω. Пусть ΓK — граница K ∈ P и E(P) — пространство функций v,
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определенных почти всюду в R2, таких что v постоянна в любом K ∈ P и равна нулю в
противном случае. Это пространство, очевидно, непустое, поскольку существует нулевая
функция.

Припишем E(P) следующую дискретную энергетическую норму: для всех v ∈ E(P)
положим

‖vh‖1,h =

[∑
a∈ξ

(∆av)

] 1
2

, где (∆av) =
∑

L,K, такие что
ΓK∩ΓL={a}

|vL − vK |2 (4.1)

и ξ — множество ребер, полностью вложенных в Ω, и K, L взяты в P.
Заметим, что ребро a может принадлежать границе Γ области Ω. В этом случае суще-

ствует единственный элемент K в P, такой что a принадлежит границе ΓK области K. В
этом случае естественно определить (∆av) посредством (∆av) = |vK |2 . Норму, определя-
емую (4.1), можно рассматривать как дискретную версию классической H1

0 (Ω)-нормы.
Введем пространство

C0

(
Ω
)

= {v : Ω −→ R кусочно-непрерывна и v = 0 на Γ}

и оператор
Π : C0

(
Ω
)
−→ E (P) ,

v 7→ Π, v

[Πv] (x, y) =

{
v(xK , yK ), если (x, y) ∈ Int(K),

0, если x ∈ R2\Ω,

где K ∈ P и (xK , yK ) — координаты центра K.
Пусть Uh — приближенное решение диффузионной задачи (1.1), (1.2) и UhP —функция

из E(P), такая что UhP |K = UK для K ∈ P, и где UK — приближенное решение этой же
диффузионной задачи в центральной точке (xK , yK ). Имеем

[ΠUh] (x, y) = UhP(x, y) =

{
UK , если (x, y) ∈ Int(K),

0, если (x, y) ∈ R2\Ω.
(4.2)

Определение 4.1. Пусть v — функция из E(P). Тогда v|Ω — слабое приближенное
решение диффузионной задачи (1.1), (1.2), если существует приближенное решение V
для (1.1), (1.2), такое что v = ΠV .

Замечание 4.1. Согласно определению 4.1, UhP является слабым приближенным реше-
нием (1.1), (1.2). В дальнейшем эту же приближенную функцию будем обозначать uh, а
UK обозначает ui,j .

4.2. Устойчивость слабого приближенного решения uh

Докажем устойчивость слабого приближенного решения в смысле дискретной энер-
гетической нормы (4.1). Основной частью доказательства этого результата является дис-
кретная версия неравенства Пуанкаре, которая имеет следующий вид.
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Лемма 4.1 (Дискретная версия неравенства Пуанкаре). Существует строго положи-
тельное число δ, такое что

‖v‖L2(Ω) ≤ δ‖uh‖1,h ∀ v ∈ E(P).

Доказательство можно найти в [22].

Предложение 4.1 (Устойчивость). Слабое приближенное решение uh диффузионной
задачи (1.1), (1.2) удовлетворяет неравенству

‖uh‖1,h ≤ C‖f‖L2(Ω),

где C — строго положительное действительное число, независящее от пространствен-
ной дискретизации.

Доказательство. Умножение (2.6) на ui,j и суммирование для i, j ∈ {1, 2, . . . , N} дает
при обозначениях (2.7) соотношение (3.1). Объединив (3.1) и (3.2), имеем

LHS = RHS, (4.3)

где

RHS =
∑

1≤i≤N,
1≤j≤N

h2ui,jfi,j ≤

 ∑
1≤i≤N,
1≤j≤N

h2f2
i,j


1
2
 ∑

1≤i≤N,
1≤j≤N

h2u2
i,j


1
2

≤ ‖f‖L2 ‖uh‖L2 . (4.4)

Мы имеем этот результат благодаря соотношениям (3.8), (4.3), (4.4) и лемме 4.1.

Замечание 4.2. Этот результат означает L2-устойчивость слабого приближенного ре-
шения. Это следует из леммы 4.1.

4.3. Оценки ошибки для слабого приближенного решения

После введения ошибки усечения уравнения (2.6), (2.7) преобразуются следующим
образом:

D11 [φi,j−φi−1,j ] +D11[φi,j−φi+1,j ] +D22[φi,j−φi,j−1] +D22[φi,j−φi,j+1]−
1

2
D12[φi+1,j+1−φi+1,j−1]+

1

2
D12[φi−1,j+1−φi−1,j−1]=h2fi,j+h

2Ri,j ∀ 1 ≤ i, j ≤ N (4.5)

при
φi,0 = φ0,j = φi,N+1 = φN+1,j = 0 ∀ 1 ≤ i, j ≤ N. (4.6)

Замечание 4.3. При предположении φ ∈ C3(Ω) по блокам основной сетки существуют
положительная постоянная C, зависящая только от Ω, и функция φ, такая что

|Ri,j | ≤ Ch2 ∀ 1 ≤ i, j ≤ N. (4.7)

Определим функцию εh почти везде в R2 следующим образом:

εh (x, y) =

{
εK , если (x, y) ∈ Int(K),
0 в противном случае при K ∈ P, (4.8)

где множество εK = φK − uK для всех K ∈ P; εK — общее обозначение для εi,j .
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Замечание 4.4. Из соотношения (4.8) видно, что функция εh ∈ E(P). Эта функция в
некотором смысле выражает ошибку (т. е. разницу между точным и слабым приближен-
ным решением uh) и некоторые оценки этой ошибки приведены ниже.

Теперь покажем, что величины {εi,j}1≤i,j≤N являются решением дискретной задачи
вида (2.6), (2.7).

Вычитание (4.5) из (2.6) дает

D11 [εi,j − εi−1,j ] +D11[εi,j − εi+1,j ] +D22[εi,j − εi,j−1] +D22[εi,j − εi,j+1]−
1

2
D12[εi+1,j+1−εi+1,j−1]+

1

2
D12[εi−1,j+1−εi−1,j−1]=h2Ri,j ∀ 1 ≤ i, j ≤ N (4.9)

при
εi,0 = ε0,j = εi,N+1 = εN+1,j = 0 ∀ 1 ≤ i, j ≤ N. (4.10)

Умножение (4.9) на εi,j , суммирование по i, j при 1 ≤ i, j ≤ N и использование (3.8)
дают следующее неравенство:

γ‖εh‖21,h ≤
∑

1≤i≤N,
1≤j≤N

h2εi,jRi,j ≤

 ∑
1≤i≤N,
1≤j≤N

h2ε2
i,j


1
2
 ∑

1≤i≤N,
1≤j≤N

h2R2
i,j


1
2

≤ Ch2‖εh‖L2

 ∑
1≤i≤N,
1≤j≤N

h2


1
2

(согласно замечанию 4.3)

≤ Ch2‖εh‖L2

(
mes(Ω)

) 1
2 ≤ Ch2

(
mes(Ω)

) 1
2 ‖εh‖1,h. (4.11)

Поэтому

‖εh‖1,h ≤ C1h
2, где C1 =

C
(
mes(Ω)

) 1
2

γ
. (4.12)

Применив неравенство Пуанкаре, получим

‖εh‖L2 ≤ C2h
2, где C2 = δC1. (4.13)

Теперь исследуем оценку погрешности для L∞-нормы, определенной в простран-
стве E(P), следующим образом:

‖vh‖L∞(Ω) = max
K
|vK | или, что эквивалентно, ‖vh‖L∞(Ω) = max

1≤i,j≤N
|vi,j | .

Для любых произвольных фиксированных i и j (1 ≤ i, j ≤ N) поскольку ε0,j = 0 (см.
соотношение (2.7 )) очевидно, что

|εi,j | ≤
∑

0≤k≤i−1

|εk+1,j − εk,j | ≤
∑

0≤k≤N
|εk+1,j − εk,j | ≤

∑
0≤k≤N

h
1
2
|εk+1,j − εk,j |

h
1
2

≤

( ∑
0≤k≤N

h

) 1
2
( ∑

0≤k≤N

(εk+1,j − εk,j)2

h

) 1
2

≤
√

2
(
diam(Ω)

) 1
2h−

1
2 ‖εh‖1,h. (4.14)

При использовании соотношения (4.13) неравенство (4.14) принимает следующий вид:
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‖εh‖L∞ ≤
√

2
(
diam(Ω)

) 1
2C1h

3
2 . (4.15)

Объединим эти оценки ошибки (т. е. (4.12), (4.13) и (4.15)) в следующем утверждении.

Теорема 4.1 (Оценки ошибки в нормах L∞(Ω), L2(Ω) и ‖uh‖1,h). Предположим, что
тензор диффузии D в диффузионной задаче (1.1), (1.2) — положительно определенная
полная матрица с постоянными коэффициентами. Предположим также, что един-
ственное вариационное решение φ для (1.1), (1.2) удовлетворяет φ ∈ C3

(
Ω
)
. Напомним,

что Πφ является функцией из E(P), определяемой следующим образом :

Πφ|K(x, y) =

{
ϕK ≡ значению φ в центре K для всех K ∈ P,
0 в противном случае.

Тогда функция εh = φh− uh, где εh определяется посредством (4.8) и uh = ΠUh, удовле-
творяет следующим неравенствам :

(i) |εh|1,h ≤ Ch2,

(ii) ‖εh‖L∞(Ω) ≤
√

2Ch
3
2 ,

(iii) ‖εh‖L2 ≤ Ch2,

где C — строго положительное действительное число, зависящее исключительно
от ϕ, Ω и γmin.

5. Численные тесты

В данном пункте представим некоторые численные тесты. Для каждого теста исполь-
зуется однородная прямоугольная сетка с различными уровнями измельчения, реали-
зуемыми путем последовательного уменьшения значений, присвоенных размеру ячейки
сетки h. Некоторые тесты взяты из FVCA5 Benchmark (см. [23]). Рассматривается задача
диффузии, сформулированная в виде (1.1), (1.2).

Обозначим: numkw — число неизвестных, nnmat — число ненулевых членов в мат-
рице.

Пусть u обозначает точное решение, T — сетку, а uT = (uK)K∈T — кусочно-постоян-
ное приближенное решение. Введем следующие обозначения:
erL2 — дискретная L2-норма ошибки, определяемая как

erL2 =

(∑
K∈T

|K| (u(xK)− uK)2

)1/2

;

errL2 — относительная дискретная L2-норма ошибки, определяемая как

errL2 =


∑
K∈T

|K| (u(xK)− uK)2∑
K∈T

|K|u(xK)2


1/2

;

erL∞ — дискретная L∞-норма ошибки, определяемая как

erL∞ = max
P∈T
|uP |;
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ocv-erL2 — порядок сходимости метода для L2-нормы решения, определяемый посред-
ством erL2, относительно размера ячейки сетки:

ocv-erL2 =
ln(erL2(imax))− ln(erL2(imax− 1))

ln(h(imax))− ln(h(imax− 1))
,

где h — максимальный диаметр контрольного объема, imax — максимальный уровень
измельчения заданной основной сетки;
ocv-errL2 — порядок сходимости метода для errL2, определяемый также как ocv-erL2;
ocv-erL∞ — порядок сходимости метода для L∞-нормы, определяемый также как ocv-
erL2;
slope-[·] — порядок сходимости ошибки к нулю для норм при вычислении методом наи-
меньших квадратов ([·] означает одно из erL2, errL2, erL∞):

ln [er[·] (i)] = slope-[·] ln [h(i)] + β, где β — действительное число;

ratio-erL2 для i ≥ 2, задается как

ratio-erL2(i) = −2
ln(erL2(i))− ln(erL2(i− 1))

ln(numkw(i))− ln(numkw(i− 1))
;

ratio-errL2 и ratio-erL∞ определяются аналогичным образом.

5.1. Численный тест 1

D =

(
1 10
10 10000

)
Точное решение u(x, y) = sin(πx) sin(πy) в [0, 1]× [0, 1].

N h numkw nnmat errL2 erL2 erL∞

1 1/4 16 64 0.6192 0.1548 0.4177
2 1/8 64 288 0.2912 0.0364 0.2063
3 1/16 256 1216 0.1420 0.0089 0.1010
4 1/32 1024 4992 0.0702 0.0016 0.0498
5 1/64 4096 20224 0.0349 5.4526 e−04 0.0247
6 1/128 16384 81408 0.0174 1.3600 e−04 0.0123
7 1/256 65536 326656 0.0087 3.3996 e−05 0.0062

обозначение errL2 erL2 erL∞

slope-[·] 1.0059 2.0232 1.0164
ocv-[·] 1.0034 2.0039 1.0059

ratio-[·](6) 1.0481 2.0876 1.0464

5.2. Численный тест 2

D =

(
1 10
10 10000

)
Точное решение u(x, y) = 16x(1− x)y(1− y) в [0, 1]× [0, 1].
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N h numkw nnmat errL2 erL2 erL∞

1 1/4 16 64 0.7689 0.1922 0.5275
2 1/8 64 288 0.3637 0.0455 0.2615
3 1/16 256 1216 0.1765 0.0110 0.1284
4 1/32 1024 4992 0.0869 0.0027 0.0634
5 1/64 4096 20224 0.0431 6.7386 e−04 0.0315
6 1/128 16384 81408 0.0215 1.6785 e−04 0.0157
7 1/256 65536 326656 0.0107 4.1917 e−05 0.0078

обозначение errL2 erL2 erL∞

slope-[·] 1.0249 2.0244 1.0136
ocv-[·] 1.0034 2.0053 1.0046

ratio-[·](6) 1.0468 2.0896 1.0455

5.3. Численный тест 3

D =

(
1 5
5 107

)
Точное решение u(x, y) = sin(πx) sin(πy) в [0, 1]× [0, 1].

N h numkw nnmat errL2 erL2 erL∞

1 1/4 16 64 0.6192 0.1548 0.4176
2 1/8 64 288 0.2913 0.0364 0.2063
3 1/16 256 1216 0.1420 0.0089 0.1010
4 1/32 1024 4992 0.0702 0.0022 0.0498
5 1/64 4096 20224 0.0349 5.4523 e−04 0.0247
6 1/128 16384 81408 0.0174 1.3594 e−04 0.0123
7 1/256 65536 326656 0.0087 3.3941 e−05 0.0061

обозначение errL2 erL2 erL∞

slope- 1.0220 2.0223 1.0164
ocv-[·] 1.0041 2.0039 1.0059

ratio-[·](6) 1.0464 2.0882 1.0481

Результаты численных расчетов, приведенные выше, показывают сходимость вто-
рого порядка в L2-норме и сходимости первого порядка в относительной L2-норме и
в L∞-норме. Эти результаты свидетельствуют о сходимости представленной численной
схемы и согласуются с теоретическими результатами.

6. Выводы и перспективы

Мы предложили анализ сходимости метода конечных разностей для задач двумер-
ных течений в однородных пористых средах с однородным тензором проницаемости.
Наш результат показал существование и единственность решения дискретной задачи.
Результат устойчивости и оценки ошибки были доказаны с использованием L2-, L∞- и
относительной L2-нормы. Численные тесты подтвердили теоретические результаты. На-
ша задача на будущее — представить аналогичную работу на структурированной сетке
с использованием треугольников.
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