УДК 662.21, 536.711

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УРАВНЕНИЯ СОСТОЯНИЯ ПРОДУКТОВ ВЗРЫВА ВВ В ФОРМЕ JWL НА ОСНОВЕ ДАННЫХ, ПОЛУЧАЕМЫХ МЕТОДОМ ПРЕГРАД

Е. Н. Богданов, Р. А. Воронков, В. Н. Князев

РФЯЦ, ВНИИ экспериментальной физики, 607190 Capob, postmaster@ifv.vniief.ru

Представлен новый способ определения параметров уравнения состояния JWL продуктов взрыва взрывчатых веществ по экспериментальным данным. В качестве опорных точек используются экспериментально полученные значения давления и массовой скорости на адиабате расширения — торможения продуктов взрыва. Значения параметров уравнения состояния JWL определяются с помощью итерационного алгоритма.

Ключевые слова: уравнение состояния, взрывчатое вещество, продукты взрыва, изоэнтропа расширения, состояние Чепмена — Жуге, метод преград.

DOI 10.15372/FGV2022.9224

ВВЕДЕНИЕ

Энергия взрывчатых веществ (ВВ) широко используется в военной технике и гражданской промышленности. В частности, воздействие продуктов взрыва (ПВ) является одним из наиболее широко распространенных инструментов для создания ударных волн в образцах исследуемых материалов при изучении широкого класса процессов и свойств [1].

В практике проведения исследований в последние десятилетия все более значимой становится роль численного моделирования, позволяющего существенно сократить временные и экономические затраты. Для надежного численного моделирования закономерностей и особенностей воздействия ПВ на материалы необходимо достоверное уравнение состояния (УРС), корректно описывающее изоэнтропу расширения ПВ конкретного ВВ как в области ниже точки Жуге, так и в области пересжатой детонации.

В настоящее время существует два подхода к определению параметров УРС ПВ. Один основан на расчете термохимических УРС ПВ химически реагирующих смесей [2, 3], а в другом подходе используются экспериментальные данные [4–7].

В практике газодинамических расчетов хорошо зарекомендовало себя УРС ПВ в форме Джонса — Уилкинса — Ли (JWL) [8]. Для параметрической идентификации УРС JWL обычно используют результаты цилиндрических тестов [4–6] — опытов, в которых регистрируют радиус и скорость разлета медной цилиндрической оболочки, заполненной исследуемым BB.

В данной работе изложен новый способ определения параметров УРС JWL для продуктов взрыва по экспериментальным данным. В качестве опорных точек, в отличие от упомянутого выше цилиндрического теста, используются полученные методом преград [1] значения давления и массовой скорости ПВ на адиабате расширения — торможения ПВ из состояния Чепмена — Жуге. Значения параметров УРС JWL определяются с помощью итерационного алгоритма. Близкий по смыслу подход применялся ранее в работе [7] для определения параметров УРС Зубарева.

ОПИСАНИЕ СПОСОБА

Уравнение изоэнтропы УРС JWL имеет вид

$$p_s = A \exp\left(\frac{-R_1}{\delta}\right) + B \exp\left(\frac{-R_2}{\delta}\right) + C\delta^{1+\omega},$$
(1)

где p — давление ПВ; $\delta = \rho/\rho_0$ — сжатие ПВ; ρ — плотность ПВ; ρ_0 — начальная плотность ВВ; $A, B, R_1, R_2, C, \omega$ — параметры, определяемые для каждого ВВ.

Для сокращения количества определяемых параметров УРС JWL выразим параметры A,

Работа выполнена в рамках научной программы Национального центра физики и математики (направление № 3 «Газодинамика и физика взрыва»).

[©] Богданов Е. Н., Воронков Р. А., Князев В. Н., 2023.

B, C через R_1, R_2 . Запишем выражение для давления в точке Жуге:

$$p_{\rm CJ} = A \exp\left(\frac{-R_1}{\delta_{\rm CJ}}\right) + B \exp\left(\frac{-R_2}{\delta_{\rm CJ}}\right) + C\delta_{\rm CJ}^{1+\omega}.$$
(2)

В точке Жуге прямая Михельсона является касательной к изоэнтропе расширения ПВ:

$$\left(\frac{\partial p}{\partial \rho}\right)_s = C_{\rm CJ}^2 = \frac{1}{\rho_{\rm CJ}^2} \frac{p_{\rm CJ}}{1/\rho_0 - 1/\rho_{\rm CJ}},\qquad(3)$$

где $C_{\rm CJ}$ — скорость звука в точке Жуге. Закон сохранения внутренней энергии в точке Жуге:

$$E_{\rm CJ} = Q + \frac{1}{2} p_{\rm CJ} \Big(\frac{1}{\rho_0} - \frac{1}{\rho_{\rm CJ}} \Big),$$
 (4)

где *Q* — калорийность BB.

Используя уравнения (2)-(4), выразим параметры A, B, C через параметры R_1, R_2 , калорийность BB Q, характеристики состояния в точке Жуге и начальную плотность BB:

$$B = \left(\frac{p_{\rm CJ} - \omega\delta_{\rm CJ}\left(Q\rho_0 + \frac{p_{\rm CJ}}{2}\left(1 - \frac{1}{\delta_{\rm CJ}}\right)\right)}{1 - \frac{\omega\delta_{\rm CJ}}{R_1}} - \right)$$

$$-\frac{p_{\rm CJ} - \frac{\rho_0 D^2}{(1+\omega)\delta_{\rm CJ}}}{1 - \frac{R_1}{(1+\omega)\delta_{\rm CJ}}}\right) \bigg/ \bigg(\frac{1 - \omega\delta_{\rm CJ}/R_2}{1 - \omega\delta_{\rm CJ}/R_1} -$$

$$-\frac{1-R_2/(1+\omega)\delta_{\rm CJ}}{1-R_1/(1+\omega)\delta_{\rm CJ}}\Big)\exp\Big(\frac{-R_2}{\delta_{\rm CJ}}\Big),$$

$$A = \left(p_{\rm CJ} - \frac{\rho_0 D^2}{(1+\omega)\delta_{\rm CJ}} - \right)$$
(5)

$$-B\left(1-\frac{R_2}{(1+\omega)\delta_{\rm CJ}}\right)\exp\left(\frac{-R_2}{\delta_{\rm CJ}}\right)\right) \middle/$$
$$\left/\left(1-\frac{R_1}{(1+\omega)\delta_{\rm CJ}}\right)\exp\left(\frac{-R_1}{\delta_{\rm CJ}}\right),$$
$$C = \frac{1}{\delta_{\rm CJ}^{1+\omega}}\left(p_{\rm CJ}-A\exp\left(\frac{-R_1}{\delta_{\rm CJ}}\right)-B\exp\left(\frac{-R_2}{\delta_{\rm CJ}}\right)\right).$$

Следует отметить, что значение параметра ω , входящего в уравнения (5), считается известным: для большинства ВВ ω варьируется в диапазоне 0.3 \div 0.5 и определяется химическим составом ВВ.

Таким образом, параметры R_1, R_2, Q в совокупности с уравнениями (5), известными значениями характеристик состояния в точке Жуге и значением начальной плотности ВВ однозначно определяют изоэнтропу расширения ПВ из состояния Чепмена — Жуге. Следовательно, дальнейшая параметрическая идентификация УРС JWL каждого конкретного ВВ сводится к определению параметров R_1, R_2 и Q.

Полагается, что для исследуемого BB имеется набор значений (четыре и более) давления и массовой скорости $\Pi B - p_i(u_i^{exp})$ на адиабате расширения — торможения ΠB , полученный экспериментально.

Для каждой изоэнтропы, построенной при произвольных значениях R_1 , R_2 , Q, численно вычисляются значения скорости u_i^{calc} , соответствующие экспериментальным значениям p_i , с использованием инварианта Римана:

$$du + \frac{dp}{\rho C} = 0, \tag{6}$$

где *С* — скорость звука в ПВ.

Для каждой изоэнтропы (при заданных R_1, R_2, Q) находится сумма квадратов разностей вычисленных (u_i^{calc}) и экспериментальных (u_i^{exp}) значений массовой скорости:

$$\Sigma = \sum_{i=1}^{n} (u_i^{calc} - u_i^{exp})^2, \qquad (7)$$

где n — количество экспериментальных данных (от четырех и более). Значения параметров R_1 , R_2 , Q определяются из условия минимума суммы квадратов разностей вычисленных и экспериментальных значений скоро-

сти — min
$$\left\{\sum_{i=1}^{n} (u_i^{calc} - u_i^{exp})^2\right\}$$

ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ УРС JWL ПРОДУКТОВ ВЗРЫВА LX-10

С целью проверки работоспособности предложенного способа с его помощью определены параметры УРС JWL продуктов взрыва состава на основе октогена LX-10.

В качестве опорных точек взята совокупность значений давления и массовой скорости

Результаты расчета давления

Таблица 1

Рис. 1. Зависимости суммы квадратов разностей скоростей от параметров $R_1(a)$ и $R_2(b)$

ПВ (табл. 1), рассчитанная по УРС JWL продуктов взрыва LX-10 с набором параметров из [9].

При определении параметров УРС JWL используется описанная выше итерационная схема, в которой для каждого набора параметров R_1 , R_2 , Q в диапазоне значений $0 \div 10$ с шагом 0.01 по уравнениям (1) и (5) рассчиты-

Рис. 2. Соотношение параметров R_1 и R_2 , соответствующее минимумам суммы квадратов разностей скоростей

вается изоэнтропа. С помощью инварианта Римана (6) численно находятся скорости u_i^{calc} , соответствующие приведенным в табл. 1 давлениям на изоэнтропе расширения ПВ. Значения набора параметров R_1 , R_2 , Q определяются в итерационном цикле из условия минимума суммы квадратов разностей вычисленных (u_i^{calc}) и экспериментальных (u_i^{exp}) значений скорости.

Для иллюстрации метода определения параметров R_1 , R_2 , Q на рис. 1,a представлены зависимости суммы квадратов разностей скоростей от параметра R_1 при варьировании параметра R_2 и фиксированном значении Q =5.75813 кДж/г (значение из [9]). На рис. 1, δ приведены зависимости суммы квадратов разностей скоростей от параметра R_2 при варьировании Q в пределах 10 %, при этом значение R_1 соответствует минимуму суммы квадратов для каждого значения Q (рис. 2).

Как видно из рис. 1, зависимости суммы квадратов разностей скоростей имеют минимум, который стремится к нулевому значению по мере приближения параметров R_1 , R_2 и Q к значениям из [9].

Принципиально важно, что каждому заданному значению R_2 (при фиксированном значении Q) соответствует значение R_1 , при котором сумма квадратов разностей скоростей принимает минимальное значение (см. рис. 2).

Результаты итерационного цикла и его промежуточные значения по определению параметров УРС JWL для LX-10 представлены в табл. 2. Как видно из таблицы, с помощью

Параметры JWL	Промежуточ- ные значения параметров	Результат определения параметров	Значения параметров из [9]	
R_1	$\begin{array}{c} 4.5 \\ 4.9 \end{array}$	4.62	4.62	
R_2	$1.08 \\ 1.78$	1.32	1.32	
A, ГПа	$851.92793 \\ 947.438$	880.70002	880.7	
B, ΓΠα	$\begin{array}{c} 13.2055 \\ 36.5887 \end{array}$	18.35998	18.36	
C, ГПа	$0.85188 \\ 1.78041$	1.29691	1.29691	
ω	$\begin{array}{c} 0.38\\ 0.38\end{array}$	0.38	0.38	
D, км/с	8.82 8.82	8.82	8.82	
$p_{\rm CJ},\Gamma\Pi{\rm a}$	$37.5012 \\ 37.5012$	37.5012	37.5012	
$\delta_{ m CJ}$	$\frac{1.34858}{1.34858}$	1.34858	1.34858	
Q, кДж/г	$5.3 \\ 5.9$	5.75813	5.75813	
Σ , (km/c) ²	$2.146763 \cdot 10^{-4} \\ 1.6 \cdot 10^{-3}$	$5.617 \cdot 10^{-13}$	_	

Таблица 2

Параметры УРС JWL для LX-10

данного способа для этого УРС JWL получены параметры, совпадающие по значению с параметрами из [9].

ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ УРС JWL ПРОДУКТОВ ВЗРЫВА ТРОТИЛА

В работе [7] определены параметры УРС Зубарева в упрощенной форме (8) для ПВ тротила с начальной плотностью $\rho_0 = 1.63$ г/см³ и характеристиками состояния в точке Жуге $p_{\rm CJ} = 19.85$ ГПа, D = 7.00 км/с, $u_{\rm CJ} = 1.74$ км/с:

$$p_s = A \exp\left(\frac{-k}{\rho}\right) + B\rho^{\gamma},\tag{8}$$

где A, B, k, γ — параметры.

Значения $A = 521.7 \ \Gamma \Pi a, \ k = 7.876 \ г/см^3, \ B = 1.762 \ \Gamma \Pi a, \ \gamma = 1.6 \ соответствуют наилуч$ шему описанию экспериментальных результатов [7] в (*p*-*u*)-координатах, полученных методом преград. С использованием в качестве

т	а	б	п	и	тт	a	3
- L	c.	o	11	¥1	ш	a	· • J

Параметры УРС JWL для тротила, полученные предложенным способом

Параметры JWL	Значения		
A, ГПа	538.523		
B, ГПа	2.89		
C, ГПа	1.319		
R_1	4.67		
R_2	0.63		
ω	0.35		
D, км/с	7.00		
$p_{\rm CJ},\Gamma\Pi{\rm a}$	19.85		
$\delta_{ m CJ}$	1.33		
Q, кДж/г	4.911		

Рис. 3. Изоэнтропа расширения продуктов взрыва тротила в разных координатах: 1 — экспериментальные точки [7], 2 — состояние в точке Жуге, 3 — изоэнтропа УРС Зубарева [7], 4 — изоэнтропа УРС JWL (табл. 3)

Рис. 4. Постановка расчета в одномерном приближении

Рис. 5. Зависимость скорости алюминиевого лайнера от времени:

опорных точек этих же экспериментальных данных [7] были определены предложенным нами способом параметры УРС JWL продуктов взрыва тротила, которые приведены в табл. 3.

На рис. 3 представлены экспериментальные данные, полученные методом преград, изоэнтропа по уравнению (8) и изоэнтропа по УРС JWL с параметрами, определенными с помощью предложенного в данной работе подхода.

Изоэнтропа из работы [7] и построенная по предложенному способу изоэнтропа удовлетворительно описывают экспериментальные данные по торможению ПВ о преграды. При давлениях p > 1 ГПа изоэнтропы практически совпадают. При p < 1 ГПа наблюдаются отличия, связанные с формой записи УРС.

Проведено численное моделирование в одномерном приближении экспериментов по метательной способности тротила (60 мм тротил и 1 мм алюминий) с использованием УРС Зубарева в упрощенной форме [7] и УРС JWL (данная работа). В расчетах алюминий рассматривался как упругопластическая среда с УРС в форме Ми — Грюнайзена с переменным коэффициентом Грюнайзена [10] и релаксационной моделью сдвиговой прочности [10]. Постановка расчета в одномерном приближении представлена на рис. 4.

На рис. 5 приведены результаты моделирования экспериментов в виде зависимости скорости алюминиевого лайнера от времени, которые свидетельствуют, что изоэнтропы расширения УРС Зубарева в упрощенной форме и УРС JWL практически совпадают.

ЗАКЛЮЧЕНИЕ

Предложен новый способ определения параметров УРС JWL продуктов взрыва по экспериментальным данным. Принципиальное отличие данного способа состоит в использовании в качестве опорных точек экспериментальных значений давления и массовой скорости на адиабате расширения — торможения продуктов взрыва. Параметры УРС JWL определяются путем итерационного приближения расчетных изоэнтроп к экспериментальным, с использованием выведенной взаимосвязи параметров УРС JWL и характеристик состояния в точке Жуге.

Работоспособность данного способа обоснована на примере определения параметров уравнения состояния JWL для продуктов взрыва тротила.

ЛИТЕРАТУРА

- Жерноклетов М. В. Экспериментальные методы в физике ударных волн и детонации. — Саров: РФЯЩ-ВНИИЭФ, 2020.
- Копышев В. П., Медведев А. Б., Хрусталев В. В. Уравнение состояния продуктов взрыва на основе модифицированной модели Ван-дер-Ваальса // Физика горения и взрыва. — 2006. — Т. 42, № 1. — С. 87–99.
- 3. **Мейдер Ч.** Численное моделирование детонации. — М.: Мир, 1985.
- Souers P. C., Ben W., Haselman L. C., Jr. Detonation equation of state at LLNL, 1995 // Tech. Rep. UCRL-ID-119262 Rev3. — Lawrence Livermore Nat. Lab., Livermore, California, USA, 1996.
- Taylor G. I. Analysis of the Explosion of a Long Cylindrical Bomb Detonated at One End. V. 3. Aerodynamics and Mechanics of Projectiles and Explosions / G. K. Batchelor (Ed.). — Cambridge, UK: Cambridge Univ. Press, 1963. — P. 277–286.
- Hill L. G. Detonation product equation-of-state directly from the cylinder test // 21st Int. Symp. on Shock Waves. — Great Keppel Island, Australia, 1997. — P. 1–6.

- Евстигнеев А. А., Жерноклетов М. В., Зубарев В. Н. Изэнтропическое расширение и уравнение состояния продуктов взрыва тротила // Физика горения и взрыва. — 1976. — Т. 12, № 5. — С. 758–763.
- Lee E. L., Hornig H. C., Kury J. W. Adiabatic expansion of high explosive detonation products. — UCRL-50422. — Lawrence Rad. Lab., Livermore, California, USA, 1968.
- Dobratz B. M., Crawford P. C. LLNL Explosives Handbook. UCRL-52997 Change2. Lawrence Livermore Nat. Lab., Livermore, California, USA, 1985.
- Глушак Б. Л., Игнатова О. Н., Надежин С. С., Раевский В. А. Релаксационная модель сдвиговой прочности пяти металлов // ВАНТ. Сер. Мат. моделирование физ. процессов. — 2012. — Вып. 2. — С. 25–36.

Поступила в редакцию 20.09.2022. После доработки 26.10.2022. Принята к публикации 14.12.2022.