Synthesis and Biological Activity of Hydrophilic Alkylphenols

A. S. OLEYNIK¹, N. YU. PEVNEVA¹, N. V. KANDALINTSEVA¹, A. E. PROSENKO¹, O. M. KHOSHCHENKO² and M. I.DUSHKIN^{2,3}

¹Research Institute of Antioxidant Chemistry, Novosibirsk State Pedagogical University, UI. Vilyuyskaya 28, Novosibirsk 630126 (Russia)

E-mail: chemistry@ngs.ru

²Scientific Research Institute of Therapy, Siberian Branch of the Russian Academy of Medical Sciences, UI. B. Bogatkova 175/1, Novosibirsk 630089 (Russia)

³Scientific Research Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, UI. Yadrintsevskaya 14, Novosibirsk 630099 (Russia)

(Received March 28, 2008; revised May 14, 2008)

Abstract

Synthesis of hydrophilic derivatives from 3-(4-hydrixyaryl)propyl series with sulphur-containing ionogenic fragments has been performed. The laws of toxic effect variation have been investigated for the compounds synthesized depending on their structure with respect to laboratory animals (mice) and bacterial cultures (*Photobacterium phosphoreum*).

Key words: hydrophilic polyfunctional antioxidants, hydroxyarylalkylsulphonates, hydroxyarylalkylthiosulphates, hydroxyarylalkyl isothiuronium halogenides, biological activity, toxicity of phenols, bioluminescence

INTRODUCTION

The development of oxidative stress under acute pathological states (infarction, stroke, ischemia/reperfusion, those caused by surgical procedures, traumas, *etc.*) requires for the creation of highly efficient antioxidative preparations with a high level of bioavailability. Of a doubtless interest from this standpoint are hydrophylic derivatives of alkylphenols with sulphur-containing ionogenic fragments (SO₃Na, SSO₃Na, SC(NH₂)₂Cl(Br)) within *n*-propyl substituent, those were earlier demonstrated to exhibit a pronounced antioxidative activity *in vitro* [1–3] as well as hepatoprotection and cardioprotection [2, 4], anti-inflammatory [3] and immunomodulation [5, 6] properties *in vivo*.

In the estimation of practical use prospects for synthetic compounds in biology and medicine alongside with their biological activity one should take into account the safety of application, too. The present work is devoted to the studies on toxic effects of structurally related hydrophylic alkylphenols **1–20** with respect to laboratory animals (mice) and bacterial cultures (*Photobacterium phosphoreum*) (Scheme 1).

EXPERIMENTAL

We presented earlier the synthesis of sulphonates 1-3 and thiosulphates 4-12 in [3, 7]; the synthesis of isothiuronium salts 14-17 in was presented [8]. Compound 13 we obtained *via* the reaction between 3-(3,5-dimethyl-4-hydroxyphenyl)-1-bromopropane 21 with thiourea; the derivatives 18-20 were obtained basing on chloropropane 22 according to Scheme 2.

S-[3-(3,5-dimethyl-4-hydroxyphenyl)propyl]isothiuronium bromide (13). To an ampoule made of heat-resistant glass were placed 5 g (20 mmol) of bromopropane **21** [7] and 1.29 g (17 mmol) of thiourea, then 6 ml of ethanol was added. The ampoule was sealed, placed into

Scheme 1.

a thermostat supplied with a shaker and held during 7 h at 120–125 °C. After cooling the ampoule was opened, the solvent was distilled away. The residue obtained was treated by warm hexane. Crystals precipitated were filtered, washed on the filter with warm hexane three times and then dried. We obtained 5.32 g (98%) of isothiuronium bromide **13**, m.p. being of 165-167 °C. ¹H NMR spectrum, δ , ppm: 1.98 m (2H, ArCH₂C<u>H</u>₂), 2.21 s, (6H, Me), 2.64 t (2H, ArC<u>H</u>₂), 3.13 t (2H, CH₂S), 6.79 s (2H, H_{arom}). IR spectrum, v_{max} , cm⁻¹: 3274 and 3009 (NH₂⁺), 1653 (NH₂⁺). Elemental analysis: Found, %: C 45.02, H 6.03, Br 25.23, N 4.99, S 9.95. C₁₂H₁₉BrN₂OS. Calculated for C₁₂H₁₉BrN₂OS, %: C 45.15, H 6.00, Br 25.03, N 5.01, S 10.04.

S-[3-(3,5-di-*tert***-butyl-4-hydroxyphenyl)propyl]-N,N'-dimethylisothiuronium chloride** (18) was obtained from chloropropane 22 [9] and N,N'-dimethylthiourea in a manner similar to the previous compound. The yield amounted to 79 %, m.p. being of 101–103 °C. ¹H NMR spectrum, δ, ppm: 1.44 s (18H, *t*-Bu), 2.04 m (2H, ArCH₂C<u>H</u>₂), 2.72 t (2H, ArC<u>H</u>₂), 3.03–3.11 d (6H, NMe), 3.17 t (2H, CH₂S), 7.01 s (2H, H_{arom}). IR spectrum, v_{max} , cm⁻¹: 3639 (PhOH), 3119 μ 2295 (N⁺H), 1639 (N⁺H). UV spectrum, λ_{max} , nm (log ε): 207 (2.29), 277 (0.19). Elemental analysis: Found, %: C 61.80, H 9.02, Cl 9.25, N 7.48, S 8.35. C₂₀H₃₅ClN₂OS. Calculated for C₂₀H₃₅ClN₂OS, %: C 62.07, H 9.11, Cl 9.16, N 7.24, S 8.28.

2-Chloroethyl-[3-(3,5-di-tert-butyl-4hydroxyphenyl)propyl]sulphide (23). To a solution of 5 g (13.9 mmol) isothiuronium chloride 16 in 15 mL of ethanol were added 1.23 g (30.8 mmol) NaOH in 15 mL of water and then 5.5 mL (69.5 mmol) of 1,2-dichloroethane, in an

553

atmosphere of argon. The reaction mixture was stirred during 3 h at 60–65 °C, cooled and treated with toluene. An extract was washed with water, dried by means of Na₂SO₄. Toluene was evaporated; the residue obtained was distilled under vacuum. The yield of target chloro derivative **23** amounted to 3.53 g (74 %), b.p. being of 183–184 °C (1 Torr). ¹H NMR spectrum, δ , ppm: 1.43 s (18H, *t*-Bu), 1.86–1.88 m (2H, ArCH₂CH₂), 2.50–2.58 m (4H, CH₂SCH₂), 2.66– 2.69 t (2 H, ArCH₂), 3.55–3.58 t (2H, CH₂Cl), 4.95 s (1H, OH), 6.89 s (2H, H_{arom}). Elemental analysis: Found, %: C 66.21, H 9.22, Cl 10.18, S 9.09. C₁₉H₃₁ClOS. Calculated for C₁₉H₃₁ClOS, %: C 66.54, H 9.11, Cl 10.33, S 9.35.

S-(β-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propylthio]ethyl)isothiuronium chloride (19) was obtained in a similar manner as it was done for isothiuronium bromide 13 from chloro derivative 23 and $SC(NH_2)_2$. The yield amounted to 94 %, m.p. being of 148-151 °C. ¹H NMR spectrum, δ, ppm: 1.43 s (18H, *t*-Bu), 1.89 m $(2H, ArCH_2C\underline{H}_2), 2.62 t (2H, Ar(CH_2)_2C\underline{H}_2),$ 2.65 t (2H, $ArCH_2$), 2.89 t (2H, $(CH_2)_3SCH_2$), 3.41 t (2H, $C\underline{H}_2S(NH_2)_2^+$), 6.99 s (2H, H_{arom}). IR spectrum, v_{max} , cm⁻¹: 3642 (PhOH), 3182 and 3006 (NH_2^+), 1644 (NH_2^+). UV spectrum, λ_{max} , nm (log ε): 207 (2.64), 277 (0.18). Elemental an alysis: Found, %: C 57.20, H 8.72, Cl 8.30, N 6.47, S 15.35. C₂₀H₃₅ClN₂OS₂. Calculated for C₂₀H₃₅ClN₂OS₂, %: C 57.32, H 8.42, Cl 8.46, N 6.68, S 15.30.

2-Hydroxyethyl-[3-(3,5-di-tert-butyl-4hydroxyphenyl)propyl]sulphide (24). 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanethiol-1 in the amount of 10 g (35.7 mmol) [10], 3.44 g (43 mmol) of 2-chloroethanol and 1.71 g (43 mmol) NaOH were dissolved in 30 mL of ethanol, the mixture was heated and boiled in an inert gas atmosphere during 2.5 h. The reaction mixture was cooled, neutralized with HCl and treated with toluene. The extract obtained was washed with water, dried by means of Na_2SO_4 , then the solvent was distilled off and the residue obtained was distilled under vacuum. The yield of the target product 24 amounted to 10.3 g (86 %), b.p. being of 184-186 °C (1 Torr). ¹H NMR spectrum, δ , ppm: 1.45 s (18H, *t*-Bu), 1.87 m (2H, ArCH₂CH₂), 2.30 s (1H, CH₂OH), 2.53 t (2H, CH₂S), 2.62 t (2H, ArCH₂), 2.69 t (2H, CH₂S), 3.66 t (2 H, CH₂OH), 4.97 s (1H, ArO<u>H</u>), 6.91 s (2H, H_{arom}). Elemental analysis: Found, %: C 70.24, H 9.86, S 10.02. C₁₉H₃₁ClOS. Calculated for C₁₉H₃₁ClOS, %: C 70.32, H 9.94, S 9.88.

2-Bromoethyl-[3-(3,5-di-tert-butyl-4hydroxophenyl)propyl]sulphide (25). In 40 mL of toluene were dissolved 10.3 g (31.7 mmol) of hydroxyethylsulphide 24 and 2.4 mL DMFA, then at 50 °C was dropwise added 1.65 ml (17.5 mmol) of PBr₃. The mixture was heated and stirred during 2.5 h at 80 °C. Further the reactionary mixture was cooled down to 60 °C; 10 mL of water was added. Then the mixture was heated again and stirred during 0.5 h at 80 °C, cooled and treated with toluene. The extract obtained was washed with water, dried by means of Na_2SO_4 , and then the solvent was distilled off. The residue obtained was chromatographed on silica gel, hexane/diethyl ether mixture (5:1)being used as an eluent. The yield of target bromo derivative 25 amounted to 6.4 g (52%). ¹H NMR spectrum, δ , ppm: 1.44 s (18H, *t*-Bu), 1.87 m (2H, ArCH₂CH₂), 2.50-2.56 m (4H, C<u>H</u>₂SC<u>H</u>₂), 2.68 t (2H, ArC<u>H</u>₂), 3.37 t (2 H, CH₂Br), 5.00 s (1H, OH), 6.90 s (2H, H_{arom}). Elemental analysis: Found, %: C 59.05, H 8.17, Br 20.49, S 8.14. C₁₉H₃₁BrOS. Calculated for $C_{19}H_{31}BrOS$, %: C 58.90, H 8.06, Br 20.62, S 8.28.

Sodium S-2-[3-(3,5-di-tert-butyl-4hydroxyphenyl)propylthio]ethylthiosulphate (20). To 6.4 g (16.5 mmol) of bromo derivative 25 dissolved in 20 mL of ethanol was added 5.7 g (23.1 mmol) $Na_2S_2O_3 \cdot 5H_2O$ in 5 mL of water. The mixture was boiled during 6 h in an argon atmosphere, cooled, treated with diethyl ether. The extract obtained was dried with Na_2SO_4 , the solvent was distilled off. The residue obtained was washed with warm (~40 $^{\circ}$ C) hexane and recrystallized from toluene. The yield of the target thiosulphonate 20 was of 2.77 g (38 %), m.p. being of 162–164 °C. ¹H NMR spectrum, δ, ppm: 1.45 s (18H, *t*-Bu), 1.88 m (2H, $\operatorname{ArCH}_2C\underline{H}_2$), 2.59–2.66 m (4H, $\operatorname{ArCH}_2CH_2C\underline{H}_2S$), 2.97 m (2H, CH₂S), 3.25 m (2H, CH₂SSO₃Na), 6.99 s (2H, H_{arom}). Elemental analysis: Found, %: C 51.49, H 7.00, S 21.84. C₁₉H₃₁BrOS.Calculated for C₁₉H₃₁BrOS, %: C 51.56, H 7.06, S 21.73.

¹H NMR spectra were registered using a Bruker DRX500 spectrometer with operation frequency of 500.13 MHz: in CDCl₃ with CHCl₃ reference for compounds **23–25**, in D₂O with

Si(CH₃)₄ reference for compounds **13**, **18**, in CD₃OD with Si(CH₃)₄ reference for compounds **19** and **20**. Melting point values were determined using PTP apparatus and Kofler warm stage. IR spectra were registered in KBr (150 : 1) with the use of a Vektor 22 Fourier transform spectrometer; UV spectra were registered in EtOH using a Specord HP-8453 spectrophotometer.

In order to study the acute toxicity of compounds 1-20 we used male C57B1/6 mice with the mass of 22–28 g. The mean lethal doze values (LD₅₀) were determined using a commonly known method described in [11]. The compounds under investigation were dissolved in physiological salt solution according to 10 various dozes (from 20–40 up to 3000 mg/kg), with the subsequent intraperitoneal introduction. The observation and animal death rate calculation was carried out during 3 days after introducing of the preparations.

The toxic effect of the compounds synthesized on *Photobacterium phosphoreum* was estimated basing on ID_{50} value numerically equal to the concentration of the preparation whose presence caused the intensity of bacterial bioluminescence of bacteria to exhibit a 50 % decrease with respect to the reference solution.

A lyophilized preparation of luminous bacteria "Microbiosensor B17-677E" from the collection of the Institute of Biophysics, SB RAS (Krasnoyarsk) was activated during 15 min in 1.5 % NaCl solution at 20 °C. In order to determine the value of ID₅₀, to a cellular suspension containing 10^9-10^{10} cells/mL (in 3 % NaCl solution) were added solutions with various concen-

TABLE 1

Fig. 1. Intensity of bacteria luminescence depending on the concentration of sodium 3-(4-hydroxyphenyl)propyl-thiosulphate 5: 1 - for a separate sample, 2 - average for a given concentration.

trations of compounds 1-20. The intensity of bacterial luminescence was measured at 20 °C using a BLM 3606M bioluminescent analyzer (Russia).

The luminescence intensity data obtained were plotted against the concentration the connection under investigation wherefrom the ID_{50} values were determined (Fig. 1).

RESULTS AND DISCUSSION

The results of the studies on biological activity of compounds 1-20 are presented in Table 1. One can see that for the compounds synthesized the level of toxic effect on laboratory animals and *Ph. phosphoreum* depends both on the nature of an ionogenic fragment, and on

Compound	LD ₅₀ , mg/kg	ID ₅₀ , mmol/L	Compound	LD ₅₀ , mg/kg	ID ₅₀ , mmol/L
1	1800	0.21	11	300	0.96
2	275	1.34	12	150	1.07
3	860	0.51	13	110	208
4	975	5.87	14	600	670
5	800	3.14	15	175	235
6	1000	4.68	16	30	0.02
7	175	0.65	17	112	46.4
8	320	0.37	18	50	38.1
9	288	1.38	19	30	0.02
10	450	1.84	20	280	0.45

LD₅₀ and ID₅₀ values for hydrophilic derivatives of alkylphenols under investigation

the number and the structure of *o*-substituents in the aromatic nucleus.

For sulphonates **1–3** and thiosulphates **4–12**, **20** $LD_{50} = 275-1800$ and 150-1000 mg/kg, respectively, for isothiuronium salts **13–19** this value amounted to 30-600 mg/kg. According to the classification by the author of [12], the most part of the compounds synthesized belongs to the IV class of toxicity (low-toxic substances), and only spatially shielded isothiuronium salts **16**, **18**, **19** belong to III class (moderately toxic substances), whereas o-substituted sulphonate **1** could be related to V class of toxicity (almost non-toxic substances).

In the series of compounds 1-5-15, 2-7-16, **3–10–17** with the identical structure of an arylalkyl substituent the acute toxicity grows with the substitution of the sulphonate group by the thiosulphate one and further by the isothiuroium group. At the same time, irrespective of the nature of an ionogenic fragment, LD_{50} value decreases with switching from o-di-tertbutyl substituted compounds to less shielded analogues. The maximum values of LD₅₀ are inherent in o-unsubstituted compounds, as well as in o-dimethyl and O-methyl substituted derivatives. At first sight, these data seem to be contradictory with respect to commonly known concepts of the fact that the toxicity level of spatially hindered phenols is lower as compared to the toxicity level of unsubstituted analogues [13]. However, it should be noted that a low toxicity level was demonstrated earlier only for hydrophobic 2,6-di-tert-butylphenols and it could be caused by a considerably lower (in comparison with non-alkylated phenols) solubility of the latter in biological media of living organisms.

For compounds 1-20 the values of ID_{50} vary within the range of 0.02-670 mmol/L, *i.e.* within a wider range as compared to LD_{50} values. In addition, the variation of the structure in the series of the compounds under investigation is ambiguously reflected in the values of ID_{50} . So, with the transition from sulphonate to thiosulphate and further to isothiuroium chloride in the series of di-*tert*-butyl substituted compounds 2-7-16 the values of ID_{50} exhibit a decrease from 1.34 to 0.02 mmol/L. At the same time for similar series of di- and mono-o-unsubstituted compounds 1-5-15 and 3-10-17 one can observe an increase in the values of ID_{50} . In the series of isothiuronium and thiosulphate derivatives 16-17-15 and 7-10-5 with a consecutive removal of *tert*-butyl substituents the ability of compounds to inhibit bacterial bioluminescence decreases, whereas in the series of sulphonates 2-3-1, this property, on the contrary, increases.

The methylation of the phenolic OH group and the nitrogen atoms of the isothiuronium fragment results in a decrease in toxic effect of compounds 4, 14, 18 as compared to the toxic action of the compounds 5, 15, 16, both with respect to laboratory animals and regarding *Ph. phosphoreum*.

Comparative analysis of LD_{50} and ID_{50} values for compounds **1–20** has allowed us to reveal two reaction series within the range of those the mentioned parameters exhibit a reliable correlation with each other (Fig. 2).

Using the correlation equation derived from the values of LD_{50} and ID_{50} for 3-(4-

Fig. 2. Correlation between LD_{50} and ID_{50} values for chlorides 3-(4-hydroxyaryl) propylisothiuronium chlorides (*a*) and 3-(4-hydroxyaryl)propylthiosulphated (*b*).

hydroxyaryl)propylthiosulphates **4**, **6–10**, we have calculated LD_{50} values from experimentally determined ID_{50} parameters for compounds **5** and **11**. The LD_{50} values calculated for mentioned thiosulphates amounted to 627 and 286 mg/kg, respectively, which is in a good agreement with LD_{50} values determined from the experiments (800 and 300 mg/kg, respectively). It should be noted that the present approach has allowed us to reduce the number of laboratory animals involved into acute experiment aimed at determining the values of LD_{50} for compounds **5** and **11**.

CONCLUSION

The results of the studies carried out indicate the fact that the level of toxic influence of hydrophilic derivatives from 3-(4-hydroxyaryl)propyl series upon laboratory animals and bacterial cultures depends on the two structural factors: the nature of a polar fragment in the *p*-substituent, as well as on the number and structure of alkyl o-substituents within the aromatic nucleus. In separate reaction series the values of LD_{50} and ID_{50} correlate with each other, which could be used for the practical purposes.

As far as the level of toxic influence upon animal organisms is concerned, the hydrophilic derivatives under investigation belong to lowtoxic compounds, which in the aggregate with the pronounced antioxidation and protection activity [1-7] allows one to consider them to be promisinge bioantioxidants.

REFERENCES

- 1 N. V. Kandalintseva, O. I. Dyubchenko, A. E. Prosenko et al., Khim.-Farm. Zh., 35, 3 (2001) 22.
- 2 N. V. Kandalintseva, O. I. Dyubchenko, E. I. Terakh et al., *Ibid.*, 36, 4 (2002) 13.
- 3 N. K. Zenkov, E. B. Menshchikova, N. V. Kandalintseva et al., Biokhim., 72 (2007) 790.
- 4 A. R. Kolpakov, N. K. Zenkov, E. B. Menshchikova et al., VI Mezhdunar. Konf. "Bioantioksidant" (Thesises), Moscow, 2002, p. 278.
- 5 I, D, Fridland, A. E. Prosenko, S. Yu. Klepikova et al., Med. Immunol., 3 (2001) 243.
- 6 O. P. Kolesnikova, N. V. Kandalintseva, A. E. Prosenko, VII Mezhdunar. Konf. "Bioantioksidant" (Thesises), Moscow, 2006, p. 156.
- 7 A. S. Oleynik, T. S. Kuprina, N. Yu. Pevneva et al., Izv. RAN. Ser. Khim., 6 (2007) 1094.
- 8 N. V. Kandalintseva, A. E. Prosenko, O. I. Dyubchenko et al., Zh. Org. Khim., 37 (2001) 1317.
- 9 RU Pat. No. 1376511, 1993.
- 10 A. E. Prosenko, E. I. Terakh N. V. Kandalintseva et al., Zh. Prikl. Khim., 74 (2001) 1839.
- 11 D. L. Eaton and C. D. Claasen, in C. D. Claasen (Ed.), In: Casarett and Doull's Toxicology: The Basic Science of Poisons, McGraw-Hill Companies, 2001, pp. 11–34.
- 12 K. K. Sidorov, Toksikologiya Novykh Promyshlennykh Khimicheskikh Veshchestv (A Collection of Papers), Meditsina, Moscow, 1973, p. 47.
- 13 V. V. Ershov, G. A. Nikiforov, A. A. Volodkin, Prostranstvenno-Zatrudnennye Fenoly, Khimiya, Moscow, 1972, p. 352.