
423 

Теплофизика и аэромеханика, 2024, том 31, № 3 

УДК 532.5.013.4 

О параболизации уравнений 
распространения малых возмущений 
в двумерных пограничных слоях* 

А.В. Бойко, К.В. Демьянко, Г.В. Засько, Ю.М. Нечепуренко 

Институт вычислительной математики им. Г.И. Марчука РАН, 
Москва 

E-mail: k.demyanko@inm.ras.ru 

Работа посвящена моделированию распространения возмущений в вязких несжимаемых ламинарных 
пограничных слоях на основе линеаризованных уравнений распространения амплитуд возмущений. Наряду 
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ванные на уравнениях, полученных из полных исключением продольной компоненты градиента давления 
и/или вязких членов в продольном направлении. Модели сравниваются численно на примере генерации 
и развития возмущений в пограничном слое над слабо вогнутой пластиной. Делаются выводы о возможности 
одними и теми же упрощенными моделями адекватно моделировать как волны Толлмина – Шлихтинга, так 
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Введение 

При теоретическом и численном исследованиях пространственной неустойчивости 
двумерных ламинарных пограничных слоев рассматривают трехмерные, гармонические 
по времени и поперечному направлению возмущения малой амплитуды. Развитие таких 
возмущений вниз по потоку описывают с помощью линеаризованных относительно 
основного течения уравнений движения вязкой несжимаемой жидкости, из которых 
затем выводят уравнения для амплитуд возмущений. Краевая задача для этих уравнений 
с любыми значениями амплитуд компонент скорости на границе рассматриваемой 
области пограничного слоя, обеспечивающими сохранение массы, имеет единствен-
ное решение. Однако граничные условия для возмущений на выходе из этой области, 
как правило, не известны. Поэтому обычно используют упрощенные уравнения рас-
пространения амплитуд возмущений, полученные из полных, например, отбрасыванием 
членов, отвечающих за вязкую диссипацию в продольном направлении, и продольной ком-
поненты градиента давления. Такая параболизация уравнений распространения амплитуд 
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возмущений, которые изначально являлись эллиптическими, позволяет для этих уравне-
ний корректно поставить задачу Коши в продольном направлении. Этот подход широко 
используется при исследовании неустойчивости Гёртлера (см., например, [1 – 4]) и для вы-
числения пространственных оптимальных возмущений (см., например, [5 – 7]). Однако 
он оправдан лишь в случаях, когда отбрасываемые члены малы. 

Задача Коши в продольном направлении для полных уравнений распространения 
амплитуд возмущений требует задания начальных (по продольной переменной) значе-
ний шести неизвестных функций, например: значений амплитуд трех компонент скорос-
ти, производных двух из них в продольном направлении и давления. Независимо от вы-
бора функций, для которых задаются начальные условия, полученная задача Коши будет 
некорректна по Адамару [8]. Она будет допускать решения, сколь угодно сильно нарас-
тающие вниз по потоку. Хотя решения, сильно нарастающие вниз по потоку, не реали-
зуются на практике, при численном решении задачи Коши из-за погрешностей округ-
ления мы будем всегда получать именно такие решения при любых начальных условиях. 
Известно два способа, позволяющих избежать этого. Первый — выполнять на каждом 
шаге численного интегрирования вниз по потоку спектральную редукцию, исключаю-
щую из решения сильно нарастающие локальные моды (см., например, [9 – 12]). Второй — 
использовать для численного интегрирования так называемый PSE-метод (см., напри-
мер, [13 – 15]), подавляющий сильно нарастающие локальные моды за счет использо-
вания неявного метода Эйлера со специально подобранным шагом интегрирования. 
Эти подходы также можно интерпретировать как методы параболизации уравнений 
распространения амплитуд возмущений. Кроме того, спектральную редукцию, исклю-
чающую сильно нарастающие моды, иногда называют регуляризацией либо интегриро-
ванием уравнений Навье – Стокса в одном направлении [11], поскольку групповые ско-
рости мод, не нарастающих либо слабо нарастающих вниз по потоку, направлены вниз 
по потоку, а групповые скорости мод, сильно нарастающих вниз по потоку, направлены 
вверх по потоку. Что касается PSE-метода, то он не только подавляет сильно нарастаю-
щие локальные моды, но значительно искажает все остальные, кроме ведущей [16], 
и поэтому не подходит для моделирования распространения, например, оптимальных 
возмущений, представляющих собой пакеты большого числа различных мод [17]. 

Следует отметить, что постановка пространственной задачи Коши для линеаризо-
ванных уравнений вязкой несжимаемой жидкости, по-видимому, впервые была подроб-
но рассмотрена в работе [8] при анализе развития вниз по потоку возмущения, заданного 
в некотором поперечном сечении в двумерном плоско-параллельном пограничном слое. 
В частности, было отмечено, что хотя такая задача некорректна по Адамару, она может 
быть регуляризована, если наложить определенные ограничения на начальные условия. 
Следуя работе [18], было предложено искать решение этой задачи в виде линейной 
комбинации собственных мод линеаризованных уравнений. Поиск решения в таком 
виде, в частности, позволил определить ограничения на начальные условия, гарантирую-
щие отсутствие сильно нарастающих вниз по потоку решений. Однако, как было отме-
чено выше, из-за погрешностей округления такой подход при численном интегрирова-
нии все равно будет приводить к сильно нарастающим решениям. 

Данная работа посвящена численному исследованию различных способов пара-
болизации линеаризованных уравнений распространения амплитуд возмущений для мо-
делирования развития вниз по потоку волн Толлмина – Шлихтинга и вихрей Гёртлера. 
В качестве источника возмущений рассматривается мембрана, отклоняющаяся с малой 
амплитудой по нормали к поверхности гармонически по поперечному направлению 
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и времени. Сравниваются модель, использующая полные линеаризованные уравнения 
и спектральную редукцию (проектирование решения на подпространство локальных 
мод, не нарастающих либо слабо нарастающих вниз по потоку) на каждом шаге чис-
ленного интегрирования вниз по потоку, модель, использующая полностью параболи-
зованные уравнения (отброшены члены, отвечающие за вязкую диссипацию в продоль-
ном направлении, и продольная компонента градиента давления), и две модели, осно-
ванные на комбинации этих подходов: модель, использующая уравнения, в которых 
отброшены только члены, отвечающие за вязкую диссипацию в продольном направле-
нии, и модель, использующая уравнения, в которых отброшена только продольная ком-
понента градиента давления. В каждой из двух последних моделей используется спект-
ральная редукция, поскольку, в отличие от полной параболизации, частичная параболи-
зация не позволяет полностью исключить моды, сильно нарастающие вниз по потоку. 

Работа организована следующим образом. В разделе 1 описывается рассматривае-
мая конфигурация (пограничный слой вязкой несжимаемой жидкости над слабо вогну-
той пластиной) и приводятся обезразмеренные уравнения движения вязкой несжимае-
мой жидкости над такой пластиной в локальных криволинейных координатах. В разделе 2 
выводятся уравнения генерации и распространения амплитуд малых возмущений. В раз-
деле 3 описываются упомянутые выше численные модели и используемые в них ори-
гинальный универсальный алгоритм спектральной редукции и оригинальный универ-
сальный алгоритм алгебраической редукции [19, 20], позволяющей существенно упрос-
тить исходную систему уравнений. В разделе 4 обсуждаются результаты численных 
экспериментов с этими моделями. В заключении подводятся итоги данной работы, в том 
числе делаются выводы о том, в каких случаях оправдано использование упрощенных 
моделей вместо модели на основе полных уравнений, что позволяет существенно сокра-
тить вычислительные затраты. 

Всюду далее i означает мнимую единицу, I — единичную матрицу подходящего 
порядка, T — операцию транспонирования, * — операцию транспонирования и комп-
лексного сопряжения. 

1. Уравнения движения вязкой несжимаемой жидкости 
    над вогнутой пластиной 

Рассмотрим течение вязкой несжимаемой жидкости над вогнутой пластиной беско-
нечного размаха и постоянного радиуса кривизны R, помещенной под нулевым углом 
атаки и с нулевым углом скольжения в однородный набегающий поток с величиной 
скорости U∞. Будем использовать ортогональные криволинейные координаты (x, y, z), 
где y — расстояние до пластины по нормали к поверхности, x — расстояние от передней 
кромки до основания этой нормали вдоль поверхности пластины, z — поперечная коор-
дината. Через u, v, w, p, ρ и ν обозначим соответственно компоненты скорости 
в направлениях x, y, z, давление, плотность и кинематическую вязкость жидкости. Нас 
будет интересовать движение жидкости на расстояниях y, не превосходящих некоторой 
величины ymax < R, и на расстояниях x: 0 < xmin ≤ x ≤ xmax, при которых пограничный слой 
уже сформировался, но его толщина значительно меньше ymax. Скорость жидкости 
на расстоянии ymax от поверхности пластины будем считать направленной вдоль x, 
а ее величину обозначим через Ue(x).  
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Пусть на пластине в полосе xmin ≤ x ≤ x0, где x0 < xmax, расположен бесконечно 
протяженный в поперечном направлении источник малых возмущений, имеющий длину 
l = x0 – xmin << x0. Будем предполагать, что источник с хорошей точностью описывается 
неоднородными, нестационарными граничными условиями: 

u (x, 0, z, t) = ηu (x, z, t), v (x, 0, z, t) = ηv (x, z, t), w (x, 0, z, t) = ηw (x, z, t), 

xmin ≤ x ≤ x0 , – ∞ < z < ∞, 
где ηu (x, z, t), ηv (x, z, t) и ηw (x, z, t) — некоторые достаточно гладкие функции, равные 
нулю вместе со своими первыми односторонними производными по x при x = xmin и x0. 
На остальной поверхности пластины для всех компонент скорости будем предполагать 
нулевые граничные условия (условия прилипания). 

Выбрав скорость U∞ набегающего потока в качестве характерной скорости, а рас-
стояние x0 от передней кромки до правой границы источника — в качестве характерной 
длины по x, введем число Рейнольдса Re = U∞ x0 /ν и безразмерную кривизну K = δ0 /R, 

где δ0 = 0x Uν ∞ = 0 Rex  — характерный масштаб длины по нормали к поверхности 
для пограничного слоя Блазиуса на расстоянии x0 от передней кромки. Это позволит 

записать число Гёртлера в виде Go Re .K=   
Обезразмерим все переменные и параметры, сохраняя их обозначения:  

0 0 0

Re Re: , : , : ,x y zx y z
x x x

= = =  

max maxmin
min max max

0 0 0

Re
: , : , : ,

x yx
x x y

x x x
= = =  

2
0 0

Re Re Re: , : , : , : , : ,
tUu v w pu v w t p

U U U x Uρ
∞

∞ ∞ ∞

= = = = =  

e
e

0

Re Re
: , : , : , : , : .u v w

u v w
Ull U

x U U U U
η η η

η η η
∞ ∞ ∞ ∞
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Движение жидкости над пластиной описывается уравнениями Навье – Стокса и уравне-
нием неразрывности, которые после обезразмеривания имеют следующий вид в рассмат-
риваемых криволинейных координатах: 

1
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где 

2 2 2

2 2 2 2
1 1= .

Re 1(1 )
K
Ky yKy x y z

∂ ∂ ∂ ∂
∆ + − +

− ∂− ∂ ∂ ∂
 

Эти уравнения дополняются следующими граничными условиями: 

max e max max( , , , ) = ( ), ( , , , ) = ( , , , ) = 0u x y z t U x v x y z t w x y z t  при min max ;x x x≤ ≤  

( ,0, , ) = ( , , ), ( ,0, , ) = ( , , ), ( ,0, , ) = ( , , )u v wu x z t x z t v x z t x z t w x z t x z tη η η  при min 1x x≤ ≤  
(то есть в области источника); 
условиями прилипания для всех компонент скорости при max1 ,x x≤ ≤  где < < .z−∞ ∞  

В поперечном направлении будем предполагать периодичность всех зависящих 
от z переменных и параметров модели с периодом λz. Тогда описанную математическую 
модель останется дополнить граничными условиями для компонент скорости при x = xmin 
и xmax. 

2. Уравнения генерации и распространения малых возмущений 

Пусть течение в интересующей нас области при = = = 0u v wη η η  является стацио-
нарным с компонентами скорости, равными 

( , , , ) = ( , ), ( , , , ) = ( , ), ( , , , ) = 0,u x y z t U x y v x y z t V x y w x y z t  

причем max( ,0) = ( ,0) = ( , ) = 0U x V x V x y  и max e( , ) = ( )U x y U x  при min maxx x x≤ ≤  (далее 

это течение будем называть основным), а при ненулевых ,uη  vη  и wη  течение пред-

ставляет собой возмущенное основное течение с отклонениями компонент скорости 
и давления от компонент скорости и давления основного течения, соответственно рав-
ными ,u′  ,v′  w′  и .p′  

Далее рассмотрим частный случай описанной конфигурации. Во-первых, предпо-
ложим, что max< 1.K Ky   Во-вторых, предположим, что источник возмущений является 
гармоническим по z и t и представляет собой мембрану, колеблющуюся с малой ампли-
тудой в направлении y. В этом случае с точностью до членов второго порядка малости 
будут справедливы следующие равенства: 

( , , ) = ( ,0) ( , , ), ( , , ) = ( , , ), ( , , ) = 0,u v w
Ux z t x x z t x z t x z t x z t
y t

ηη η η η∂ ∂
−
∂ ∂

 

где 

{ }i( )( , , ) = Real ( )e ,z tx z t H x β ωη −  

= 2 / zβ π λ  — поперечное волновое число, ω — угловая частота, H(x) — амплитуда коле-

баний мембраны, представляющая собой достаточно гладкую функцию на отрезке 
min 1,x x≤ ≤  равную нулю вместе со своими первыми односторонними производными 

при  x = xmin и 1 [5]. Отметим, что такого типа граничные условия называют условиями 
Бенджамина [21]. 
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В рассматриваемом случае возмущения компонент скорости и давления предста-
вимы в виде: 

{ } { }i( ) i( )( , , , ) = Real ( , )e , ( , , , ) = Real ( , )e ,z t z tu x y z t u x y v x y z t v x yβ ω β ω− −′ ′′ ′ ′′
 

{ } { }i( ) i ( )( , , , ) = Real ( , )e , ( , , , ) = Real ( , )e ,z t z tw x y z t w x y p x y z t p x yβ ω β ω− −′ ′′ ′ ′′  

где ,u′′ ,v′′ ,w′′ p′′  — комплексные амплитуды. Подставляя выражения для ,u′ ,v′ w′, p′ в ли-
неаризованные относительно основного течения уравнения (1), с учетом сделанных пред-
положений получим следующую систему уравнений для амплитуд возмущений: 
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x x y y x x
v V v V p vU u V v Uu v
x x y y y x
w w wU V p w
x y x

u v w
x y

βω

βω

βωβ

β

∂ ∂ ∂ ∂ ∂ ∂
+ + + + = + ∆

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
+ + + + + = + ∆

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ + = + ∆

∂ ∂ ∂
∂ ∂

+ + =
∂ ∂



         (2) 

где 
2

2
2= i .

yβω β ω∂
∆ − +

∂
 

Здесь и далее для упрощения обозначений двойные штрихи у амплитуд возмущений 
опущены. Уравнения (2) рассматриваются в области min max< <x x x  и max0 < <y y  со сле-
дующими граничными условиями на верхней и нижней границах области: 

max max max min max( , ) = ( , ) = ( , ) = 0, ,u x y v x y w x y x x x≤ ≤  

min( ,0) = ( ,0) ( ), ( ,0) = i ( ), ( ,0) = 0, 1,Uu x x H x v x H x w x x x
y

ω∂
− − ≤ ≤
∂

 

max( ,0) = ( ,0) = ( ,0) = 0, 1 .u x v x w x x x≤ ≤  

Отметим, что для уравнений (2) вместо однородных граничных условий на верхней 
границе расчетной области иногда используют асимптотические граничные условия [22]. 
В этом случае в качестве ymax достаточно выбрать границу пограничного слоя, сократив 
тем самым высоту расчетной области. Однако такой подход ориентирован на расчет 
ведущей локальной моды. 

Для системы уравнений (2) можно поставить краевую задачу. Для этого для каждой 
компоненты скорости нужно задать граничные условия на левой и правой границах 
области, то есть при min=x x  и maxx  и max0 .y y≤ ≤  На левой границе естественно 
задать однородные условия: 

min min min max( , ) = ( , ) = ( , ) = 0, 0 ,u x y v x y w x y y y≤ ≤                      (3) 

означающие отсутствие возмущений перед источником. Однако на правой границе 
граничные условия, как правило, неизвестны, поэтому для системы (2) ставят задачу 
Коши в продольном направлении. 
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3. Численные модели распространения возмущений вниз по потоку 

Опишем возможную аппроксимацию системы (2) по y и рассмотрим различные 
численные модели распространения амплитуд возмущений на основе полученной после 
аппроксимации системы дифференциальных и алгебраических уравнений. 

Будем использовать метод коллокаций [23] на сетке с узлами = ( )i iy y s , где 

max
1( ) = , 1 1,

2 (1 )
sy s y s

sσ
+

− ≤ ≤
+ −

 

σ — масштабирующий множитель, а = cos
1i

is
N
π 

 + 
 и являются при 1 i N≤ ≤  корнями 

многочлена Чебышёва второго рода степени N. Отметим, что в этих обозначениях узлы 
сетки по y нумеруются от 0 max=y y  до 1 = 0.Ny +  Матрицы численного дифференциро-
вания по s сеточных функций, заданных только во внутренних узлах либо во всех узлах, 
будем вычислять по алгоритмам, описанным в работе [24]. Используя формулу диффе-
ренцирования сложной функции, из них можно получить матрицы дифференцирования 
по y для давления и скорости, которые будем обозначать через Dp и D1 соответственно. 
Для вычисления вторых производных компонент скорости будем использовать матрицу 

2
2 1= .D D  Через d1 и d2 обозначим соответственно последние столбцы матриц D1 и D2 

без первых и последних элементов. Для вычисления производных по y компонент ско-
рости с учетом нулевых граничных условий будем использовать матрицы дифферен-
цирования, полученные из матриц D1 и D2 отбрасываем первых и последних строк 
и столбцов, сохранив их обозначения. Через U, V и Uy , Vy будем обозначать диаго-
нальные матрицы порядка N, содержащие значения компонент основного течения и их 
производных по y во внутренних узлах сетки по y, полученных численным дифферен-
цированием. 

Перед аппроксимацией преобразуем в системе (2) первые два уравнения, используя 
тождества 

= , = i ,
x y y x x y

β∂ ∂ ∂ ∂ ∂ ∂
− + +

∂ ∂ ∂ ∂ ∂ ∂
U u Vu V Vu vu V u V Vw  

справедливые в силу уравнений неразрывности для основного течения и возмущений. 
Тогда в результате аппроксимации этой системы по y получим следующую систему 
обыкновенных дифференциальных уравнений: 

2

1 1 2

2
2

1 2

2

1 2

1

1 12 ( ) = ( ) ,
Re Re

1(2 ) i 2Go = ( ) ,
Re

1i =
Re

i ( ) 0,

y

y p

d d d H x
dx dx dx
d d d H x
dx dx dx
d d
dx dx

d H x
dx

β

β

β

+ + − + + +

+ + + + + + + +

+ + +

+ + + =

u

v

p

u p uU VD u U D V v Lu f

v Vu vU VD V v Vw Uu D p Lv f

w wU VD w p Lw,

u D v w f



    (4) 

где u, v, w и p — N-компонентные векторные функции значений компонент амплитуды 
возмущения во внутренних узлах сетки по y, зависящие только от x, 2

2= ( i ) ,β ω− −L D I  
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а 2 1 2 1 1= ( ,0)( 2 ), = i ( 2 ), = ix
y

ω ω∂
− − − − −
∂u v p
Uf d Vd f d Vd f d  учитывают граничные усло-

вия, моделирующие источник. 
Введя вспомогательные переменные 

1 1= , = ,
Re Re

d d
dx dx

− −
v wv Vu w   

систему (4) можно свести к системе обыкновенных дифференциальных уравнений первого 
порядка следующего вида: 

= ( ) ( ),d x x
dx

+
q M q f                                                    (5) 

где ( )TT T T T T T= , , , , , ,q u v w v w p   а f и M — соответственно 6N-компонентный столбец 

и квадратная матрица порядка 6N, зависящие от x. Длина источника предполагается 
малой: min1 1x−  , поэтому скорость основного течения над ним можно считать не зави-
сящей от x. Таким образом, при моделировании генерации возмущений, то есть при 

min < < 1,x x  матрица M не будет зависеть от x. 

3.1. Численное интегрирование вниз по потоку 

Рассмотрим для системы (5) задачу Коши с нулевыми начальными условиями при 

min= .x x  Как отмечалось выше, эта задача допускает решения, сильно нарастающие вниз 
по потоку. Более того, с уменьшением шага сетки максимальный инкремент нарастания 
таких решений будет стремиться к бесконечности. Для исключения сильно нарастающих 
решений предлагается на каждом шаге численного интегрирования по x проектировать 
вычисленное решение системы (5) на инвариантное подпространство матрицы M(x), 
отвечающее собственным значениям, чья действительная часть не превышает некоторой 
заданной, не очень большой величины. Такие собственные значения и отвечающие им 
моды для краткости далее будем называть физически значимыми. Найденное таким 
образом решение, очевидно, не будет слишком сильно нарастать вниз по потоку. 

Отметим, что проектирование решения системы (5) на инвариантное подпрост-
ранство ее физически значимых локальных мод является развитием подхода, пред-
ложенного в работе [18], который основан на представлении решения в виде ряда 
по собственным модам дискретного спектра. Такая система может оказаться неполной, 
более того, даже в случае полноты она чувствительна к малым возмущениям из-за неор-
тогональности собственных мод. В то же время, несмотря на численную неустойчивость 
отдельных мод, инвариантное подпространство, отвечающее группе физически значи-
мых собственных значений, в силу их хорошей отделенности от остальной части спектра, 
является вычислительно устойчивым. Кроме того, оно содержит не только собственные, 
но и все присоединенные функции, отвечающие физически значимым собственным 
значениям. 

Опишем предлагаемый метод решения задачи Коши для системы на примере 
численного интегрирования по неявному методу Эйлера: 

1( ) =k k k kε ε−− +I M q q f  
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на равномерной сетке min 1 max= < < =nx x x x  с шагом ε, где = ( ),k kxf f  = ( ).k kxM M  

Обозначим через kP  — спектральный проектор [25] матрицы ,kM  отвечающий физи-

чески значимому подмножеству kΛ  ее спектра. Такой проектор представим в виде 

= ,k k kP Q Y  где kQ  — унитарная прямоугольная матрица, столбцы которой образуют 

ортонормированный базис в инвариантном подпространстве матрицы ,kM  отвечающем 

подмножеству kΛ . Кроме того, выполняются следующие равенства: 

= = , = ,k k k k k k k k k k kQ Y M Q M Y M Q Y Y Q I  

где *=k k k kM Q M Q  — сужение матрицы Mk на это инвариантное подпространство. 
Предлагаемый алгоритм представляет собой следующую модификацию неявного 

метода Эйлера: 

( )1 k( ) = , = .k k k k k k kε ε−− +I M q Y q f q Q q

                                    (6) 

Подобным образом можно модифицировать любую другую схему численного интегри-
рования. Отметим, что поскольку при моделировании генерации возмущения зависи-
мостью от x матрицы M мы пренебрегаем, вычислить спектральный проектор в этом 
случае будет достаточно только один раз. 

Описанное проектирование решения на каждом шаге по x можно интерпретировать 
как регуляризацию соответствующей задачи Коши. Отбор представляющего интерес 
подмножества собственных значений kΛ  можно выполнять по величинам их 
вещественных частей, то есть по отвечающим собственным значениям инкрементам 
нарастания, равно как и по любому другому критерию, например, по знаку фазовых 
скоростей мод, отвечающих собственным значениям. 

Опишем один из возможных способов вычисления спектрального проектора 
квадратной матрицы M, отвечающего заданному подмножеству спектра Λ, отделенному 
от остальной части ее спектра. Этот способ устойчив к накоплению погрешностей 
округления и не требует полноты базиса собственных векторов [26]. Искомый спект-
ральный проектор представим в виде 1 1= .P Q Y  Здесь * *

1 1 2= ,−Y Q XQ  а Q1 и Q2 — 
унитарные прямоугольные матрицы, входящие в разложение Шура  

[ ]
*

11 12 1
1 2 *

22 2

= ,
0

  
  
    

S S Q
M Q Q

S Q
                                            (7) 

где Sjj — квадратные верхние треугольные матрицы, причем спектр матрицы S11 совпа-
дает с Λ, а X — решение уравнения Сильвестра  

11 22 12= .− −S X XS S  

Справедливы следующие равенства: 

1 1 1 11 1 1 1 1 1= = , = .Q Y M Q S Y MQ Y Y Q I  

Реализовать вычисление матриц Q1 и Y1 можно с помощью стандартных процедур мат-
ричного анализа: процедуры вычисления разложения Шура произвольной квадратной 
комплексной матрицы, процедуры вычисления на основе заданного разложения Шура 
нового разложения Шура с заданным порядком собственных значений на главной диаго-
нали формы Шура и процедуры решения уравнения Сильвестра. Следует отметить, что 
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это достаточно затратные вычисления с числом арифметических операций, пропорцио-
нальным кубу порядка квадратной матрицы M и мультипликативной константой, при-
мерно равной 150. 

3.2. Упрощенные модели распространения возмущений вниз по потоку 

Применение метода (6) для моделирования развития возмущений требует на каж-
дом шаге по x числа операций, пропорционального кубу числа неизвестных с достаточно 
большой мультипликативной константой. Поэтому имеет смысл попробовать упростить 
модель распространения амплитуд возмущений с целью уменьшения числа неизвестных. 
В данном разделе рассматриваются три упрощенные модели, при этом полную модель 
на основе системы (5) и спектральной редукции будем для краткости называть моделью 1. 

Для построения модели 2 отбросим в системе (5) продольную компоненту гради-
ента давления. Получим дифференциально-алгебраическую систему вида 

= ( ) ( ), ( ) ( ) = 0,d x x x x
dx

+ + +
q J q Gp g F q h  

где ( )TT T T T T= , , , , ,q u v w v w   g и h — соответственно 5N- и N-компонентные столбцы, 

J — квадратная матрица порядка 5N, F — прямоугольная матрица размера N × 5N, G — 
не зависящая от x прямоугольная матрица размера 5N × N. Эту систему при численном 
интегрировании удобно сводить с помощью алгебраической редукции, предложенной 
и обоснованной в работах [19, 20], к системе уравнений с числом переменных 4N, отно-
сительно проекции решения на ядро матрицы F(x), и системе уравнений с числом пере-
менных N, относительно проекции решения на ортогональное дополнение этого ядра. 
Опишем эти преобразования на примере неявной схемы Эйлера. Исходная система 
в этом случае имеет вид: 

( )1( ) = , = 0.k k k k k k k kε ε−− + + +I J q q Gp g F q h  

Введем в рассмотрение унитарную прямоугольную матрицу Z1k , столбцы которой 

образуют ортонормированный базис в линейной оболочке столбцов матрицы *
kF и уни-

тарную прямоугольную матрицу Z2k , дополняющую Z1k до унитарной квадратной, и пред-

ставим решение в виде qk = q1k + q2k, где qik = Zik ,ikq а .ik ik k
∗=q Z q  Столбцы матрицы 

Z2k образуют ортонормированный базис в ядре матрицы Fk и, следовательно, Fk q2k = 0. 
Кроме того введем в рассмотрение унитарную прямоугольную матрицу T, столбцы 
которой образуют ортонормированный базис в ядре матрицы G*. 

Отметим, что использование ортонормированных базисов для выполнения алгеб-
раической редукции существенно повышает устойчивость к накоплению погрешностей 
округления. Соответствующие унитарные прямоугольные матрицы базисных векторов 
можно вычислять на основе стандартного QR-разложения [26] матриц *

kF  и G, например, 

[ ]*
1 2= ,

0
k

k k k
 
 
 

R
F Z Z  

где [Z1k Z2k] — унитарная матрица порядка 5N, а Rk — квадратная невырожденная 
верхняя треугольная матрица порядка N.  
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Используя введенные матрицы и векторы, преобразуем исходную схему к следую-
щему эквивалентному виду: 

*
1 1 1 1= 0, = ,k k k k k k+R q h q Z q   

( )*
2 1 1 1 1 2 2( ) = ( ) , = ,k k k k k k k k k k k kε ε−− − + + +C J q T q q J q g q q Z q 

   

где *
2= ,k kC T Z  *

2=k k kJ T J Z  — квадратные матрицы порядка 4N. Это позволяет 

из первого уравнения найти проекцию 12q  решения qk на ортогональное дополнения ядра 

матрицы Fk , а из третьего уравнения — проекцию 2kq решения на ядро этой матрицы. 
В данном случае необходима еще и спектральная редукция, которую можно выпол-

нить на основе разложения Шура матрицы 1 .k k k
−=M J C  Для этого достаточно перепи-

сать последние два уравнения следующим образом:  

( )* 1
1 1 1 1 2( ) = ( ) , = ( ),k k k k k k k k k kε ε −
−− − + + +I M T q q J q g q q Z Cξ ξ  

что позволит выполнить спектральную редукцию так же, как и в случае модели 1. 
Для построения модели 3 преобразуем в системе (2) первые три уравнения, исполь-

зуя следующие тождества:  

= , = i , = ,
x y x x x x y y x x y

β∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
U V v V Uv Vu V v w Uw Vu u U u v V Vw Υ w  

далее отбросим слагаемые  
2 2 2

2 2 2
1 1 1, , .

Re Re Re
d d d
dx dx dx

u v w  

Тогда после аппроксимации получим систему дифференциальных уравнений 

1

2
1

1

1

1( ) ( ) ,
Re

( ) (2 2 ) i 2Go = ( ) ,

( ) i = ,

i ( ) 0.

y y

y p

y

d d H x
dx dx

d H x
dx

d
dx

d H x
dx

β

β

β

+ − + + = +

+
+ + + + + +

+ + +

+ + + =

u

v

p

u pU VD V u U v Lu f

Uv Vu VD V v Vw Uu D p Lv f

Uw VD V w p Lw

u D v w f



 

Используя четвертое уравнение, исключим теперь из первого уравнения du/dx 
и запишем полученную систему в виде 

( ) = ( ) ( ),d x x x
dx

+
D q M q f                                                (8) 

где ( )TT T T T= , , ,q u v w , p  f — некоторый 4N-компонентный столбец, D и M — неко-

торые квадратные матрицы порядка 4N, зависящие от x. К этой системе при численном 
интегрировании будем применять спектральную редукцию на основе разложения Шура 
матрицы M(x) D(x)–1. 

Для построения модели 4 отбросим в системе (8) продольную компоненту гради-
ента давления. В результате получим систему дифференциальных и алгебраических 
уравнений вида  
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( ) = ( ) ( ), ( ) ( ) = 0,d x x x x x
dx

+ + +
C q J q Gp f F q g                            (9) 

где ( )TT T T= , , ,q u v w  f и g — некоторые 3N и N-компонентные столбцы, C и J — 

некоторые квадратные матрицы порядка 3N, а F и G — прямоугольные матрицы 
размеров N × 3N и 3N × N. С помощью алгебраической редукции, аналогичной исполь-
зуемой для модели 2, полученную систему будем сводить при численном интегриро-
вании к системе уравнений с числом переменных N, относительно проекции решения 
на ортогональное дополнение ядра матрицы F(x), и к системе уравнений с числом пере-
менных 2N, относительно проекции решения на ядро этой матрицы. 

Отметим, что система (9) использовалась многими авторами для исследования не-
устойчивости Гёртлера в пограничном слое над слабо вогнутой пластиной (см., напри-
мер, [1, 5, 7]). В отличие от первых трех моделей, она не требует спектральной редукции. 

4. Численные эксперименты 

Для обсуждаемых в этом разделе численных экспериментов компоненты скорости 
U(x, y) и V(x, y) основного течения были рассчитаны на основе уравнений Прандтля [27]. 
Уравнения для амплитуд возмущений аппроксимировались по y на сетке с числом узлов 
N = 50, с параметром сжатия σ = 2,5 и величиной ymax, выбранной так, что дальнейшее ее 
увеличение не приводило к заметному изменению результатов. Для интегрирования по x 
применялась схема BDF-2 [28] в комбинации с неявной схемой Эйлера на первом шаге 
интегрирования. В области источника использовалась равномерная сетка с числом узлов 
2000, ниже по потоку — равномерная сетка с числом узлов 1000. В ходе расчетов 
проверялось, что при указанных числах узлов сеток по x и y достигалась сходимость 
по шагу сетки с достаточной точностью. 

Значения параметров конфигурации выбирались размерными, типичными для экс-
периментов в аэродинамических трубах (см., например, [2–5, 29]): радиус кривизны 
пластины R = 10 м, скорость набегающего потока U∞ = 10 м/c, кинематическая вязкость 

5= 1,497455 10ν −⋅ м2/с и соответствовала воздуху при нормальных условиях, Затем пара-
метры обезразмеривались, как это описано в разделе 1. Во всех экспериментах протя-
женность источника возмущений x0 – xmin = 0,01 м, а его амплитуда равна 

min2
0 min 0

0 min
, ,sin

x xA x x x
x x

π
 −

≤ ≤ − 
 

где 5
0 = 5 10A −⋅ м. Положение источника, которое в данном случае характеризуется пара-

метром x0 , а также размерные поперечная длина волны zΛ и частота F его колебаний 
варьировались в достаточно широких диапазонах значений, при которых доминирует 
либо неустойчивость Толлмина – Шлихтинга, либо неустойчивость Гёртлера. При этом 

0= 2 /( Re)zxβ π Λ , а 0= 2 /Fx Uω π ∞ . 
В табл. 1 представлены типичные времязатраты на моделирование генерации и раз-

вития возмущений с помощью моделей 1 – 4 относительно времязатрат на моделирова-
ние развития возмущений с помощью модели 1. При моделировании развития возмущений 
моделями 1 – 3 наиболее затратной оказалась спектральная редукция, выполняемая 
на каждом шаге численного интегрирования. Модель 4 не требует спектральной редукции, 
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поэтому ее времязатраты значительно меньше, чем у других моделей. Модели 2 и 3, 
в которых отброшены некоторые слагаемые, имеют меньшую алгебраическую размер-
ность, что заметно ускоряет спектральную редукцию. При моделировании генерации 
возмущений пренебрегается зависимостью основного течения от x, поэтому спект-
ральный проектор достаточно вычислить только при x = 1 и использовать его для спект-
ральной редукции во всей области источника. Благодаря этому времязатраты на генера-
цию оказываются пренебрежимо малыми по сравнению с времязатратами на моделиро-
вание развития возмущений. Наиболее затратно в этом случае решение систем линейных 
алгебраических уравнений на каждом шаге численного интегрирования. 

4.1. Неустойчивость Толлмина – Шлихтинга 

В данном разделе обсуждаются результаты численных экспериментов с моделями 
1 – 4 при следующих диапазонах значения параметров источника: 0 = 0,1 0,7x ÷ м, 
F = 50 ÷ 220 Гц и значении Λz = 1 м, при котором генерируются почти двумерные возму-
щения. Известно [2, 30], что при таких значениях параметров доминирует неустойчи-
вость Толлмина – Шлихтинга. Для сравнения результатов различных моделей необхо-
димо в том числе следить за величиной  

2 2
2max

0

| | | |= | | ,
Re Re

y v wE u dy+ +∫  

характеризующей среднюю плотность кинетической энергии возмущения при фиксиро-
ванном x. Эту величину далее будем для краткости называть энергией возмущения. 

Типичные зависимости от x энергии E возмущений, вычисленных с помощью мо-
делей 1 – 4 при различных значениях положения x0 источника возмущений и его частоты F, 
представлены на рис. 1 для значений параметров, указанных в табл. 2. Эти и другие 
аналогичные результаты показали, что среди упрощенных моделей адекватно модели-
рует генерацию и развитие волн Толлмина – Шлихтинга только модель 3. Модели 2 и 4, 
в которых отброшена продольная компонента градиента давления, неправильно воспро-
изводят ведущую часть спектра: в ней отсутствует собственное значение, отвечающее 
волне Толлмина – Шлихтинга. Поэтому сгенерированное возмущение быстро затухает. 

На рис. 2 показаны в некоторой части расчетной области по y абсолютные вели-
чины амплитуд компонент скорости возмущения при x = 1, то есть сразу за источником, 
и этого же возмущения при x = 4, то есть существенно ниже по потоку, рассчитанные 
полной моделью 1 и упрощенной моделью 3. Также на этом рисунке показана харак-
терная безразмерная толщина пограничного слоя [27, 31], равная 5 при x = 1 и 10 при x = 4. 
Видно, что формы амплитуд достаточно близки. Полученная с помощью этих моделей 
форма амплитуд компонент возмущений характерна для волн Толлмина – Шлихтинга. 
Кроме того, как показали дополнительные расчеты, при выбранных значениях параметров 
эти модели дают близкие значения ведущего собственного значения и отвечающих ему 
компонент скорости локальной моды. 

Та б л иц а  1  
Типичные времязатраты моделей 1– 4 при моделировании 

генерации и развития возмущений относительно времязатрат 
модели 1 на моделирование развития возмущений 

Модель 1 2 3 4 
Генерация возмущения 0,004 0,0018 0,0034 0,0016 
Развитие возмущения 1 0,64 0,5 0,036 
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Таким образом, в рассмотренном диапазоне значений параметров, при которых 

доминирует неустойчивость Толлмина – Шлихтинга, для построения упрощенной модели 
можно отбрасывать 2 2/ ,u x∂ ∂  2 2/v x∂ ∂  и 2 2/ ,w x∂ ∂  а /p x∂ ∂  необходимо оставлять. 

 
 

Рис. 1. Зависимость от x энергии E возмущения, рассчитанного  
моделями 1 (зеленый), 2 (красный), 3 (синий), 4 (черный) 

при x0 = 0,7 м, F = 50 Гц (а) и при x0 = 0,1 м, F = 220 Гц (b). 

 
 

Рис. 2. Абсолютные величины амплитуд компонент скорости возмущения сразу за источником 
(верхняя строка) и этого же возмущения существенно ниже по потоку (нижняя строка), 

рассчитанные моделями 1 (зеленый) и 3 (синий) при x0 = 0,7 м и F = 50 Гц, а также 
характерная безразмерная толщина пограничного слоя (горизонтальная пунктирная линия). 

Та б л иц а  2  
Значения безразмерных параметров, отвечающие значениям x0 и F, 

указанным в подписи к рис. 1 

x0, м F, Гц Re Gö β ω 

0,7 50 4,674⋅105 6,92 6,433⋅10–3 21,99 
0,1 220 6,678⋅104 1,607 2,431⋅10–3 13,82 
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4.2. Неустойчивость Гёртлера 

Обсудим теперь результаты численных экспериментов с моделями 1– 4, в случае, ког-
да доминирует неустойчивость Гёртлера [2, 30], а именно: при x0 = 0,3 м, F = 1 ÷ 20 Гц 
и значениях Λz = 3 ÷ 50 мм, при которых генерируются возмущения с большими углами 
наклона волнового вектора к продольному направлению. 

Типичные зависимости от x энергии E возмущений, вычисленных с помощью 
моделей 1 – 4 при различных значениях поперечной длины волны Λz источника возму-
щений и его частоты F, представлены на рис. 3. Соответствующие значения параметров 
приведены в табл. 3. Эти и другие расчеты в указанных диапазонах параметров пока-
зали, что при малых поперечных длинах волн = 3 7zΛ ÷ мм (β = 1,404 ÷ 0,6016) резуль-
таты, полученные упрощенными моделями, с хорошей точностью совпадают с резуль-
татами, полученными с использованием полной модели 1. Вывод сохраняется во всем 
рассмотренном диапазоне частот F. Поэтому в этом случае генерацию и развитие вихрей 
Гёртлера можно с достаточной точностью моделировать моделью 4, которая требует 
существенно меньших вычислительных затрат, чем остальные модели. 

Однако при больших поперечных длинах волн 20zΛ ≥ мм (β ≤ 0,2106) результаты, 
полученные упрощенными моделями, заметно сильнее отличаются от результатов пол-
ной модели. Среди упрощенных моделей наиболее адекватной остается модель 2, в которой 
отброшено только / .p x∂ ∂  Вывод сохраняется во всем рассмотренном диапазоне частот F. 

 
 

Рис. 3. Зависимость от x энергии E возмущения, рассчитанного  
моделями 1 (зеленый), 2 (красный), 3 (синий), 4 (черный) при x0 = 0,3 м, 

Λz = 7 мм (верхняя строка) и 20 мм (нижняя строка), F = 1 Гц (левая колонка) 
и 20 Гц (правая колонка). 

Та б л иц а  3  
Значения безразмерных параметров, отвечающие значениям Λz и F, 

указанным в подписи к рис. 3 

Λz , мм F, Гц Re Gö β ω 

7 
1  

2,003⋅105 

 

3,67 
0,6016 

0,1885 
20 3,77 

20 
1 

0,2106 
0,1885 

20 3,77 
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На рис. 4 для части расчетной области по  показаны абсолютные величины амп-
литуд компонент скорости возмущений при x = 1, то есть сразу за источником, и при x = 4, 
то есть существенно ниже по потоку, для значений параметров = 20zΛ мм (β = 0,2106) 

и F = 1 Гц (ω = 0,1885), при которых наблюдалось наибольшее расхождение между 
результатами моделей, изображенными на рис. 3. Видно, что среди упрощенных моде-
лей генерацию возмущения удается адекватно моделировать только моделью 3, а разви-
тие — только моделью 2. Упрощенная модель 4 при рассматриваемой большой длине 
волны не позволяет адекватно моделировать ни генерацию, ни развитие.  

Следует отметить, что форма абсолютных величин амплитуд компонент скорости 
возмущений, изображенных на рис. 4, характерна для вихрей Гёртлера. Кроме того, как 
показали дополнительные расчеты для рассмотренных значений параметров, все модели 
дают близкие компоненты скорости ведущей моды и отвечающее ей собственное зна-
чение. 

Таким образом, в рассмотренном диапазоне значений параметров, при которых 
доминирует неустойчивость Гёртлера, точность результатов, полученных с помощью 
упрощенных моделей, зависит от поперечной длины волны возмущения, что согласуется 
с результатами [32]. При достаточно малых длинах волн все упрощенные модели 
с хорошей точностью воспроизводят генерацию и развитие возмущений. В частности, 
для упрощения полной модели в этом случае можно отбрасывать / ,p x∂ ∂  2 2/ ,u x∂ ∂  2 2/v x∂ ∂  

и 2 2/ .w x∂ ∂  При достаточно больших длинах волн (характерных для областей неустой-
чивости вихрей Гертлера в лабораторных экспериментах [2, 5]) для моделирования 
генерации возмущений можно отбрасывать только 2 2/ ,u x∂ ∂  

2 2/v x∂ ∂  и 2 2/ ,w x∂ ∂  а для 
моделирования развития возмущений можно отбрасывать только / .p x∂ ∂  Поэтому при реше-
нии задач восприимчивости с использованием упрощенных моделей предпочтительно 
применять разные упрощенные модели для генерации и для распространения возму-
щений. 

 
 

Рис. 4. Абсолютные величины амплитуд компонент скорости возмущения сразу за источником 
(верхняя строка) и этого же возмущения существенно ниже по потоку (нижняя строка), 

рассчитанные моделями 1 (зеленый), 2 (красный), 3 (синий) и 4 (черный) 
при Λz = 20 мм, F = 1 Гц, а также характерная безразмерная толщина пограничного слоя 

(горизонтальная штриховая линия). 



Теплофизика и аэромеханика, 2024, том 31, № 3 

439 

Заключение 

В данной работе предложен эффективный подход к численному решению линеари-
зованных уравнений распространения амплитуд возмущений в задачах пространст-
венной гидродинамической устойчивости пограничных слоев. В качестве иллюстрации 
рассмотрены задачи моделирования волн Толлмина – Шлихтинга и нестационарных вих-
рей Гёртлера. Одной из главных проблем, возникающих при решении таких задач, явля-
ется наличие у соответствующих уравнений распространения амплитуд возмущений 
решений, сколь угодно сильно нарастающих вниз по потоку. Эти решения соответст-
вуют возмущениям, распространяющимся вверх по потоку, которые не наблюдаются 
на практике, и их надо исключать при численном решении рассматриваемых задач. 
Для этого на каждом шаге численного интегрирования вниз по потоку уравнений рас-
пространения амплитуд возмущений, дискретизированных по нормали к обтекаемой по-
верхности, найденное решение проектируется на инвариантное подпространство локаль-
ных мод этих уравнений, не распространяющихся вверх по потоку. 

Проектирование решения является весьма вычислительно затратным. Поэтому, по-
мимо численной модели, основанной на исходных линеаризованных уравнениях распро-
странения амплитуд возмущений, были рассмотрены три упрощенные модели меньшей 
алгебраической размерности, основанные на уравнениях, в которых отброшены либо 
продольная компонента градиента давления, либо члены, отвечающие за вязкую дисси-
пацию в продольном направлении, либо все эти члены. 

Работоспособность предложенного подхода, а также адекватность описанных упро-
щенных моделей исследованы на примере моделирования генерации и развития возму-
щения в пограничном слое над слабо вогнутой пластиной бесконечного размаха, поме-
щенной под нулевыми углами атаки и скольжения в однородный набегающий поток. 
При этом источник возмущений располагался на некотором расстоянии от передней 
кромки пластины и представлял собой бесконечную в поперечном направлении мем-
брану, испытывающую колебания по нормали к поверхности, гармонические в попереч-
ном направлении и по времени. В рамках всех рассмотренных численных моделей 
источник описывался граничными условиями Бенджамина. 

В ходе численных экспериментов продемонстрирована высокая эффективность 
предложенного подхода. Расчеты проведены в широком диапазоне значений парамет-
ров, при которых может доминировать как неустойчивость Толлмина – Шлихтинга, так 
и неустойчивость Гёртлера. На основе полученных результатов сделаны выводы о воз-
можности адекватного моделирования генерации и/или развития возмущений с помощью 
упрощенных моделей в рассмотренных диапазонах значений параметров. 
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