2015. Том 56, № 4

Июль

*C.* 747 – 757

УДК 548.4:548.736.5:548.734.8

# ОРИЕНТАЦИОННАЯ РАЗУПОРЯДОЧЕННОСТЬ СУЛЬФАТ-ИОНОВ В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ NH<sub>4</sub>Al<sub>0,43</sub>Fe<sub>0,57</sub>(SO<sub>4</sub>)<sub>2</sub>·12H<sub>2</sub>O

## В.Х. Сабиров

Казахстанский инженерно-педагогический университет Дружбы народов, Шымкент, Республика Казахстан E-mail: v sabirov@mail.ru

Статья поступила 30 апреля 2014 г.

С доработки — 14 ноября 2014 г.

Кристаллическая структура твердого раствора квасцов  $NH_4Al_{0,43}Fe_{0,57}(SO_4)_2 \cdot 12H_2O$  (I) изучена в пр. гр.  $Pa\overline{3}$  и ее максимальных подгруппах  $R\overline{3}$ ,  $P\overline{1}$  и P1. В центросимметричных пространственных группах сульфат-ионы занимают одну из двух взаимно противоположных ориентаций, а в триклинной группе P1 четыре из восьми тетраэдров имеют одну ориентацию. Генерацию второй оптической гармоники в кристалле I наблюдали при прохождении через него цуга чирпированных световых импульсов иттербиевого твердотельного лазера с диодной накачкой.

DOI: 10.15372/JSC20150413

Ключевые слова: квасцы, твердые растворы, запрещенные рентгеновские отражения, максимальные подгруппы, ориентационный беспорядок.

#### введение

Кристаллы железоаммонийных квасцов являются парамагнетиками и обладают температурным магнитокалорическим эффектом [1]. Кристаллы твердых растворов квасцов, содержащие различные одновалентные или двухвалентные катионы, проявляют нелинейные оптические свойства: аномальное двупреломление [2, 3] и генерацию второй оптической гармоники [4]. В массиве рентгеновских отражений таких кристаллов присутствуют немногочисленные отражения, запрещенные в кубической пространственной группе *Pa*, в которой, как правило, кристаллизуются гомогенные квасцы [5].

Лазерные исследования на иттербиевом твердотельном лазере с диодной накачкой показали, что в монокристалле NH<sub>4</sub>Al<sub>0,43</sub>Fe<sub>0,57</sub>(SO<sub>4</sub>)<sub>2</sub>·12H<sub>2</sub>O (I) происходит генерация второй оптической гармоники ( $\lambda_1 \approx 1059$  нм). С целью определения структурных беспорядков, ответственных за нелинейные свойства кристалла I, нами была изучена его кристаллическая структура в кубической пространственной группе *Pa* и ее максимальных подгруппах *R*, *P*1 и *P*1.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Монокристаллы NH<sub>4</sub>Al<sub>0,43</sub>Fe<sub>0,57</sub>(SO<sub>4</sub>)<sub>2</sub>·12H<sub>2</sub>O (I) были получены путем перемешивания алюмоаммонийных и железоаммонийных квасцов в слабокислом водном растворе серной кислоты (pH  $\approx$  5,0) в мольном соотношении 2:3 с последующим упариванием полученного раствора при комнатной температуре. Кристаллы I октаэдрической формы бесцветные: a = b = c = 12,263(1) Å, V = 1844,3(4) Å<sup>3</sup>, Z = 4,  $d_{\text{выч.}} = 1,69$  г/см<sup>3</sup>.

<sup>©</sup> Сабиров В.Х., 2015

Рентгеновский эксперимент монокристалла размером  $0,3 \times 0,2 \times 0,2$  мм был проведен на дифрактометре Xcalibur, Ruby ( $\lambda$ Cu $K_{\alpha}$ -излучение, комнатная температура,  $6,25 < \theta < 75,89^{\circ}$ ,  $-15 \le h \le 15, -15 \le k \le 15, -15 \le l \le 15, 37\,700$  отражений с  $I \ge 2\sigma(I)$ , графитовый монохроматор,  $\omega$ -сканирование). В пространственной группе  $Pa\overline{3}$  среди наблюденных отражений 255 являются запрещенными. Эмпирические поправки на поглощение, фактор Лоренца, а также поляризации введены по программе CrysAlisPro [ 6 ].

Расчеты проведены по программе SHELX-97 в полноматричном анизотропном приближении для всех неводородных атомов [7, 8]. Атомы Н молекул воды локализованы из разностного синтеза Фурье и в пространственных группах  $Pa\overline{3}$  и  $R\overline{3}$  уточнены изотропно, в группе  $P\overline{1}$  — по модели наездника, а в P1 — не уточнялись. Атомы Н катиона  $NH_4^+$  локализованы из разностных синтезов Фурье лишь в пространственной группе  $Pa\overline{3}$ , которые уточнялись моделью наездника. Для пространственной группы  $P\overline{1}$  координаты атомов Н этой группы рассчитаны по данным группы  $Pa\overline{3}$ .

В пространственных группах  $R\overline{3}$ ,  $P\overline{1}$  и P1 заселенности позиций атомов Fe и Al определены в присутствии ограничения  $\sin\theta/\lambda \le 0,4$ . Полученные значения заселенностей 0,57 (Fe) и 0,43 (Al) соответствуют результатам химического анализа. Окончательные уточнения структуры во всех пространственных группах проведены при этих значениях заселенностей. При уточнении структуры были использованы стандартные значения геометрических параметров SO<sub>4</sub>-тетраэдра. Анизотропные параметры смещения кристаллохимически эквивалентных в структуре атомов во всех группах уравнивались. Основные параметры уточнения кристаллической структуры I в различных пространственных группах приведены в табл. 1, координаты атомов и изотропные параметры смещения атомов — в табл. 2, важнейшие межатомные расстояния и валентные углы — в табл. 3.

Анализ сериальных погасаний рентгеновских отражений кристалла I показывает, что среди отражений кристалла I присутствуют слабые, но наблюдаемые отражения с нечетными индексами h, k и l (рис. 1, a). Наличие таких нечетных отражений указывает на потерю кристаллической структурой винтовых осей 2<sub>1</sub>. Запрещенные в кубической сингонии отражения с нечетными индексами h, k и l наблюдаются и среди зональных отражений (см. рис. 1, a) и свидетельствуют о потери плоскости скольжения a. В результате этих потерь метрика кристалла претерпевает t-трансформацию из пространственной группы  $Pa\overline{3}$  в изотрансляционную тригональную максимальную подгруппу R.

Таблица 1

|                                                  | Пространственная группа |                 |                 |                |  |  |  |  |
|--------------------------------------------------|-------------------------|-----------------|-----------------|----------------|--|--|--|--|
| Параметр                                         | $Pa\overline{3}$        | $R\overline{3}$ | $P\overline{1}$ | <i>P</i> 1     |  |  |  |  |
| Независимые отражения, $F_0 > 4\sigma(F_0)$      | 648                     | 2259            | 7582            | 7576           |  |  |  |  |
| Уточняемый                                       | 65                      | 258             | 624             | 865            |  |  |  |  |
| Число ограничений                                | 25                      | 126             | 512             | 843            |  |  |  |  |
| GOOF по $F^2$                                    | 1,162                   | 1,138           | 1,198           | 1,107          |  |  |  |  |
| $R(\Sigma)$                                      | 0,0113                  | 0,0211          | 0,0353          | 0,0355         |  |  |  |  |
| R <sub>int</sub>                                 | 0,0811                  | 0,0799          | 0,0724          | 0,0728         |  |  |  |  |
| $R_1 \left( I > 2\sigma(\mathbf{I}) \right)$     | 0,0322                  | 0,0424          | 0,043           | 0,0432         |  |  |  |  |
| $wR_2 (I > 2\sigma(\mathbf{I}))$                 | 0,077                   | 0,121           | 0,1268          | 0,1264         |  |  |  |  |
| $R_1$ (по всем отражениям)                       | 0,0299                  | 0,0479          | 0,0513          | 0,0515         |  |  |  |  |
| $\Delta \rho_{max} / \Delta \rho_{min}, e^2/Å^3$ | 0,507 / -0,386          | 0,181 / -0,862  | 0,673 / -0,825  | 0,999 / -0,868 |  |  |  |  |
| μ, мм <sup>-1</sup>                              | 6,961                   | 6,402           | 7,185           | 7,073          |  |  |  |  |
| Флэка                                            |                         |                 |                 | 0,51(6)        |  |  |  |  |

Параметры уточнения структуры I в пространственных группах  $Pa\overline{3}$ ,  $R\overline{3}$ ,  $P\overline{1}$  и P1

# Таблица 2

| A. TO 1                 | Порти          |                | v        |            |          |                       | A. TOM              | Лории                 |          | ×             |            | -        | II               |
|-------------------------|----------------|----------------|----------|------------|----------|-----------------------|---------------------|-----------------------|----------|---------------|------------|----------|------------------|
| 1                       | 1103ИI<br>2    | ция<br>З       | х<br>4   | <i>y</i> 5 | 2<br>6   | U <sub>экв</sub><br>7 | АТОМ<br>1           | 1103ИI<br>2           | ция<br>З | <i>x</i><br>4 | <i>y</i> 5 | 2<br>6   | U <sub>экв</sub> |
|                         | 2              | 5              | -        | 5          | 0        | ,                     | 1                   | 2                     | 5        | 7             | 5          | 0        | ,                |
|                         |                |                |          |            |          | пр. гр. <i>Р</i>      | a 3                 |                       | -        |               |            |          |                  |
| M <sup>3+</sup>         | 4( <i>a</i> )  | 3              | 0        | 0          | 0        | 3,3(6)                | O(1)                | 8(c)                  | 3        | 2411(3)       | 2411(3)    | 2411(3)  | 49(2)            |
| $O_w(1)$                | 24(d)          | 1              | 152(2)   | -157(2)    | 1567(2)  | 16(1)                 | O(2)                | 24(d)                 | 1        | 2655(3)       | 4205(3)    | 3126(3)  | 30(1)            |
| H(1) <sub>w1</sub>      | 24(d)          | 1              | 22(5)    | 34(3)      | 201(4)   | 48(17)                | O(1A)               | 8(c)                  | 3        | 3778(6)       | 3778(6)    | 3778(6)  | 35(5)            |
| $H(2)_{w1}$             | 24(d)          | 1              | 38(5)    | -73(5)     | 182(4)   | 41(15)                | O(2A)               | 24(d)                 | 1        | 2127(12)      | 3763(15)   | 2932(14) | 15(2)            |
| $O_w(2)$                | 24(d)          | 1              | 459(3)   | 1392(2)    | 3006(2)  | 28(1)                 | Ν                   | 4(b)                  | 3        | 5000          | 5000       | 5000     | 20(2)            |
| H(1) <sub>w2</sub>      | 24(d)          | 1              | 4(3)     | 189(3)     | 289(5)   | 44(17)                | $H_1$               | 8(c)                  | 3        | 461           | 461        | 461      | 4(6)             |
| $H(2)_{w2}$             | 24(d)          | 1              | 107(2)   | 163(4)     | 289(5)   | 46(17)                | H <sub>2</sub>      | 24(d)                 | 1        | 460           | 550        | 508      | 5(4)             |
| S                       | 8( <i>c</i> )  | 3              | 3090(1)  | 3090(1)    | 3090(1)  | 12(1)                 |                     |                       |          |               |            |          |                  |
| пр. гр. $R\overline{3}$ |                |                |          |            |          |                       |                     |                       |          |               |            |          |                  |
| $M_{1}^{3+}$            | 3( <i>a</i> )  | 3              | 0        | 0          | 0        | 4,0(3)                | H(2) <sub>2w</sub>  | 18( <i>f</i> )        | 1        | 699(6)        | 480(8)     | -36(4)   | 8(3)             |
| $M_{2}^{3+}$            | 9( <i>d</i> )  | $\overline{1}$ | 5000     | 5000       | 0        | 4,0(3)                | O(3) <sub>w</sub>   | 18( <i>f</i> )        | 1        | 4848(3)       | 4845(2)    | 1565(2)  | 16(1)            |
| S(1)                    | 18( <i>f</i> ) | 1              | 8091(1)  | 3090(1)    | 1909(1)  | 13,0(3)               | H(1) <sub>3w</sub>  | 18( <i>f</i> )        | 1        | 471(5)        | 533(3)     | 201(4)   | 3(2)             |
| O(11)                   | 18( <i>f</i> ) | 1              | 7413(4)  | 2414(4)    | 2583(4)  | 34(1)                 | $H(2)_{3w}$         | 18( <i>f</i> )        | 1        | 462(5)        | 426(3)     | 177(5)   | 3(2)             |
| O(21)                   | 18( <i>f</i> ) | 1              | 8131(4)  | 2669(4)    | 785(3)   | 25(1)                 | O(4) <sub>w</sub>   | 8( <i>f</i> )         | 1        | 4842(2)       | 3434(2)    | -152(3)  | 16(1)            |
| O(31)                   | 18( <i>f</i> ) | 1              | 7671(4)  | 4217(3)    | 1868(4)  | 25(1)                 | H(1) <sub>4w</sub>  | 18( <i>f</i> )        | 1        | 429(3)        | 313(4)     | -38(5)   | 3(2)             |
| O(41)                   | 18( <i>f</i> ) | 1              | 9208(3)  | 3127(3)    | 2339(4)  | 25(1)                 | H(2) <sub>4w</sub>  | 18( <i>f</i> )        | 1        | 535(4)        | 300(5)     | -19(7)   | 6(2)             |
| O(11A)                  | 18( <i>f</i> ) | 1              | 8915(13) | 3771(14)   | 1353(15) | 34(2)                 | O(5) <sub>w</sub>   | 18( <i>f</i> )        | 1        | 4543(3)       | 6392(3)    | 3010(3)  | 27(1)            |
| O(21A)                  | 18( <i>f</i> ) | 1              | 7975(13) | 2202(12)   | 1131(13) | 16(2)                 | H(1) <sub>5w</sub>  | 18( <i>f</i> )        | 1        | 391(2)        | 660(5)     | 301(6)   | 4(2)             |
| O(31A)                  | 18( <i>f</i> ) | 1              | 8811(15) | 2949(14)   | 2852(12) | 22(2)                 | H(2) <sub>5w</sub>  | 18( <i>f</i> )        | 1        | 494(4)        | 693(4)     | 294(6)   | 4(2)             |
| O(41A)                  | 18( <i>f</i> ) | 1              | 7192(13) | 3854(14)   | 2029(14) | 21(2)                 | O(6) <sub>w</sub>   | 18( <i>f</i> )        | 1        | 8008(3)       | 456(3)     | 3610(3)  | 28(1)            |
| S(2)                    | 6(c)           | 3              | 3091(1)  | 3091(1)    | 3091(1)  | 12(1)                 | H(1) <sub>6w</sub>  | 18( <i>f</i> )        | 1        | 797(5)        | 107(2)     | 335(5)   | 3(1)             |
| O(12)                   | 6(c)           | 3              | 2412(4)  | 2412(4)    | 2412(4)  | 49(2)                 | H(2) <sub>6w</sub>  | 18( <i>f</i> )        | 1        | 791(6)        | 2(4)       | 311(4)   | 5(2)             |
| O(22)                   | 18( <i>f</i> ) | 1              | 2647(4)  | 4201(3)    | 3122(4)  | 41(1)                 | O(7) <sub>w</sub>   | 18( <i>f</i> )        | 1        | 1391(3)       | 3004(3)    | 456(3)   | 27(1)            |
| O(12A)                  | 6(c)           | 3              | 3778(3)  | 3778(3)    | 3778(3)  | 12(1)                 | $H(1)_{7w}$         | 18( <i>f</i> )        | 1        | 160(5)        | 286(6)     | 107(2)   | 4(2)             |
| O(22A)                  | 18( <i>f</i> ) | 1              | 2064(15) | 3670(1)    | 2910(1)  | 12(2)                 | $H(2)_{7w}$         | 18( <i>f</i> )        | 1        | 189(4)        | 287(5)     | 4(4)     | 3(2)             |
| $O_w(1)$                | 18( <i>f</i> ) | 1              | -155(2)  | 1565(2)    | 151(3)   | 16(1)                 | O(8) <sub>w</sub>   | 18( <i>f</i> )        | 1        | 5458(3)       | 1393(3)    | 995(3)   | 28(1)            |
| $H(1)_{1w}$             | 18( <i>f</i> ) | 1              | 34(4)    | 199(5)     | 32(6)    | 6(2)                  | H(1) <sub>8w</sub>  | 18( <i>f</i> )        | 1        | 604(3)        | 160(5)     | 226(6)   | 4(2)             |
| $H(2)_{1w}$             | 18(f)          | 1              | -72(4)   | 178(6)     | 43(7)    | 7(3)                  | $H(2)_{8w}$         | 18( <i>f</i> )        | 1        | 506(4)        | 194(4)     | 208(5)   | 3(2)             |
| $O_w(2)$                | 18(f)          | 1              | 6565(2)  | 4847(3)    | 159(2)   | 16(1)                 | N(1)                | 3( <i>b</i> )         | 3        | 0             | 0          | 5000     | 20(1)            |
| $H(1)_{2w}$             | 18( <i>f</i> ) | 1              | 683(5)   | 458(5)     | 72(3)    | 3(1)                  | N(2)                | <b>3</b> ( <i>b</i> ) | 3        | 5000          | 5000       | 5000     | 20(2)            |
|                         |                |                |          |            |          | пр. гр. <i>I</i>      | 21                  |                       | -        |               |            |          |                  |
| $M_1^{3+}$              | 1( <i>a</i> )  | 1              | 0        | 0          | 0        | 3,7(2)                | O(45A)              | 2( <i>i</i> )         | 1        | 2915(15)      | 8700(1)    | 2880(1)  | 28(2)            |
| O(1) <sub>w</sub>       | 2( <i>i</i> )  | 1              | -1562(2) | -151(3)    | 155(3)   | 16(1)                 | S(6)                | 2(i)                  | 1        | 3089(1)       | 1910(1)    | 8090(10) | 12(1)            |
| $H(1)_{1w}$             | 2( <i>i</i> )  | 1              | -201     | -177       | -37      | 4(2)                  | O(16)               | 2( <i>i</i> )         | 1        | 2415(4)       | 2587(4)    | 7414(4)  | 41(1)            |
| $H(2)_{1w}$             | 2( <i>i</i> )  | 1              | -184     | -25        | 64       | 2(2)                  | O(26)               | 2( <i>i</i> )         | 1        | 2653(4)       | 794(4)     | 8126(4)  | 31(1)            |
| $O(2)_w$                | 2( <i>i</i> )  | 1              | -157(2)  | 1567(2)    | 153(3)   | 16(1)                 | O(36)               | 2( <i>i</i> )         | 1        | 209(4)        | 1870(4)    | 7657(4)  | 30(1)            |
| $H(1)_{2w}$             | 2( <i>i</i> )  | 1              | -73      | 1890       | 40       | 4(2)                  | O(46)               | 2( <i>i</i> )         | 1        | 3128(4)       | 2342(4)    | 9206(4)  | 30(1)            |
| $H(2)_{2w}$             | 2(i)           | 1              | 37       | 201        | 34       | 7(3)                  | O(16A)              | 2( <i>i</i> )         | 1        | 3764(17)      | 1352(18)   | 8907(16) | 29(2)            |
| O(3) <sub>w</sub>       | 2( <i>i</i> )  | 1              | 152(3)   | -156(3)    | 1567(2)  | 16(1)                 | O(26A)              | 2( <i>i</i> )         | 1        | 2101(15)      | 1280(10)   | 7900(10) | 28(2)            |
| $H(1)_{3w}$             | 2(i)           | 1              | 21       | 37         | 200      | 6(2)                  | O(36A)              | 2(i)                  | 1        | 3755(19)      | 2066(19)   | 7110(15) | 22(2)            |
| $H(2)_{3w}$             | 2(i)           | 1              | 43       | -74        | 191      | 5(2)                  | O(46A)              | 2(i)                  | 1        | 2900(1)       | 2893(15)   | 8750(1)  | 28(2)            |
| $M_2^{3+}$              | 2(i)           | 1              | 5000     | 5000       | 0        | 3,7(2)                | O(13) <sub>w</sub>  | 2(i)                  | 1        | 6391(3)       | 3008(3)    | 4541(3)  | 27(1)            |
| O(4) <sub>w</sub>       | 2( <i>i</i> )  | 1              | 6563(2)  | 4846(3)    | 159(3)   | 16(1)                 | H(1) <sub>13w</sub> | 2( <i>i</i> )         | 1        | 667           | 293        | 393      | 5(2)             |

Координаты атомов (Å×10<sup>4</sup>, для H×10<sup>3</sup>) и параметры смещения  $U_{_{3KB}}$  ( $Å^2$ ×10<sup>3</sup>, для H×10<sup>2</sup>) атомов в структуре I в пр. гр. Ра $\overline{3}$ ,  $R\overline{3}$ ,  $P\overline{1}$  и P1

|                     |               |   |          |          |          |        |                     | П             | p | эдолж   | кение   | табл    | ı. 2  |
|---------------------|---------------|---|----------|----------|----------|--------|---------------------|---------------|---|---------|---------|---------|-------|
| 1                   | 2             | 3 | 4        | 5        | 6        | 7      | 1                   | 2             | 3 | 4       | 5       | 6       | 7     |
| $H(1)_{4w}$         | 2( <i>i</i> ) | 1 | 695      | 467      | -38      | 6(2)   | H(2) <sub>13w</sub> | 2( <i>i</i> ) | 1 | 694     | 287     | 495     | 5(2)  |
| H(2) <sub>4w</sub>  | 2( <i>i</i> ) | 1 | 698      | 475      | 65       | 6(3)   | O(14) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 3006(3) | 4541(3) | 6391(3) | 27(1) |
| O(5) <sub>w</sub>   | 2( <i>i</i> ) | 1 | 4843(3)  | 3433(2)  | -154(3)  | 16(1)  | H(14) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 284     | 390     | 659     | 5(2)  |
| H(1) <sub>5w</sub>  | 2( <i>i</i> ) | 1 | 424      | 308      | -41      | 4(2)   | H(24) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 287     | 492     | 688     | 4(2)  |
| H(2) <sub>5w</sub>  | 2( <i>i</i> ) | 1 | 537      | 300      | -27      | 5(2)   | O(15) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 4539(3) | 6389(3) | 3008(3) | 28(1) |
| O(6) <sub>w</sub>   | 2( <i>i</i> ) | 1 | 4849(3)  | 4843(3)  | 1565(2)  | 16(1)  | H(1) <sub>15w</sub> | 2( <i>i</i> ) | 1 | 396     | 659     | 294     | 3(2)  |
| H(1) <sub>6w</sub>  | 2( <i>i</i> ) | 1 | 470      | 535      | 196      | 3(2)   | H(2) <sub>15w</sub> | 2( <i>i</i> ) | 1 | 486     | 680     | 295     | 4(3)  |
| H(2) <sub>6w</sub>  | 2( <i>i</i> ) | 1 | 461      | 428      | 184      | 4(2)   | O(16) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 3612(3) | 8005(3) | 457(4)  | 27(1) |
| Fe3                 | 1( <i>a</i> ) | 1 | 5000     | 0        | 5000     | 3,7(2) | H(1) <sub>16w</sub> | 2( <i>i</i> ) | 1 | 319     | 790     | 12      | 4(2)  |
| O(7) <sub>w</sub>   | 2( <i>i</i> ) | 1 | 3434(2)  | -156(3)  | 4842(3)  | 16(1)  | H(2) <sub>16w</sub> | 2( <i>i</i> ) | 1 | 343     | 801     | 98      | 3(2)  |
| H(1) <sub>7w</sub>  | 2( <i>i</i> ) | 1 | 3107     | -386     | 4215     | 5(2)   | O(17) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 3008(3) | 460(3)  | 1391(3) | 27(1) |
| H(2) <sub>7w</sub>  | 2( <i>i</i> ) | 1 | 2961     | -31      | 536      | 5(2)   | H(1) <sub>17w</sub> | 2( <i>i</i> ) | 1 | 285     | 105     | 176     | 5(2)  |
| O(8) <sub>w</sub>   | 2( <i>i</i> ) | 1 | 4844(3)  | 1565(2)  | 4848(3)  | 16(1)  | H(2) <sub>17w</sub> | 2( <i>i</i> ) | 1 | 283     | 1       | 860     | 8(3)  |
| H(1) <sub>8w</sub>  | 2( <i>i</i> ) | 1 | 426      | 180      | 464      | 2(2)   | O(18) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 5458(3) | 1389(3) | 1992(3) | 28(1) |
| H(2) <sub>8w</sub>  | 2( <i>i</i> ) | 1 | 534      | 201      | 469      | 4(2)   | H(1) <sub>18w</sub> | 2( <i>i</i> ) | 1 | 603     | 169     | 214     | 32(2) |
| O(9) <sub>w</sub>   | 2( <i>i</i> ) | 1 | 5152(3)  | -157(3)  | 3436(2)  | 16(1)  | H(2) <sub>18w</sub> | 2( <i>i</i> ) | 1 | 505     | 185     | 210     | 4(2)  |
| H(1) <sub>9w</sub>  | 2( <i>i</i> ) | 1 | 539      | -70      | 312      | 2(2)   | O(19) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 1391(3) | 3005(3) | 459(3)  | 27(1) |
| H(2) <sub>9w</sub>  | 2( <i>i</i> ) | 1 | 528      | 32       | 302      | 8(3)   | H(1) <sub>19w</sub> | 2( <i>i</i> ) | 1 | 175     | 290     | 105     | 5(2)  |
| Fe(4)               | 2( <i>i</i> ) | 1 | 0        | 5000     | 5000     | 3,7(2) | H(2) <sub>19w</sub> | 2( <i>i</i> ) | 1 | 190     | 286     | 6       | 5(2)  |
| O(10) <sub>w</sub>  | 2(i)          | 1 | 1564(2)  | 4848(3)  | 4847(3)  | 16(1)  | O(20) <sub>w</sub>  | 2(i)          | 1 | 1991(3) | 5453(4) | 1391(3) | 28(1) |
| $H(1)_{10w}$        | 2(i)          | 1 | 204      | 479      | 534      | 4(2)   | $H(1)_{20w}$        | 2(i)          | 1 | 213     | 588     | 160     | 2(2)  |
| H(2) <sub>10w</sub> | 2( <i>i</i> ) | 1 | 181      | 464      | 435      | 2(2)   | H(2) <sub>w</sub>   | 2( <i>i</i> ) | 1 | 214     | 491     | 187     | 7(3)  |
| O(11) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 154(3)   | 6566(2)  | 4847(3)  | 16(1)  | O(21) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 453(4)  | 3612(3) | 8007(3) | 28(1) |
| $H(1)_{11w}$        | 2( <i>i</i> ) | 1 | 65       | 6800     | 464      | 2(2)   | H(1) <sub>21w</sub> | 2( <i>i</i> ) | 1 | 93      | 344     | 793     | 3(2)  |
| H(2) <sub>11w</sub> | 2( <i>i</i> ) | 1 | -35      | 7047     | 471      | 4(2)   | H(2) <sub>21w</sub> | 2( <i>i</i> ) | 1 | 6       | 307     | 790     | 6(2)  |
| O(12) <sub>w</sub>  | 2( <i>i</i> ) | 1 | -151(3)  | 4845(3)  | 3435(2)  | 16(1)  | O(22) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 1391(3) | 1995(3) | 5459(3) | 27(1) |
| H(1) <sub>12w</sub> | 2( <i>i</i> ) | 1 | -44      | 434      | 319      | 2(1)   | H(1) <sub>22w</sub> | 2( <i>i</i> ) | 1 | 174     | 218     | 608     | 3(2)  |
| H(2) <sub>12w</sub> | 2( <i>i</i> ) | 1 | -28      | 543      | 300      | 6(2)   | H(2) <sub>22w</sub> | 2( <i>i</i> ) | 1 | 196     | 207     | 510     | 5(2)  |
| S(1)                | 2( <i>i</i> ) | 1 | 8090(1)  | 3090(1)  | 1909(1)  | 12(1)  | O(23) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 8010(3) | 456(4)  | 3611(3) | 28(1) |
| O(11)               | 2( <i>i</i> ) | 1 | 7411(4)  | 2407(4)  | 2581(4)  | 42(1)  | H(1) <sub>24w</sub> | 2( <i>i</i> ) | 1 | 785     | 96      | 343     | 4(3)  |
| O(21)               | 2( <i>i</i> ) | 1 | 8127(4)  | 2653(4)  | 796(4)   | 31(1)  | H(2) <sub>24w</sub> | 2( <i>i</i> ) | 1 | 794     | 9       | 323     | 4(2)  |
| O(31)               | 2( <i>i</i> ) | 1 | 9202(3)  | 3125(4)  | 2347(4)  | 31(1)  | O(24 <sub>w</sub> ) | 2( <i>i</i> ) | 1 | 458(3)  | 1389(3) | 3003(3) | 27(1) |
| O(41)               | 2( <i>i</i> ) | 1 | 7659(4)  | 4208(3)  | 1872(4)  | 31(1)  | H(1) <sub>24w</sub> | 2( <i>i</i> ) | 1 | 4       | 195     | 289     | 4(2)  |
| O(11A)              | 2( <i>i</i> ) | 1 | 8901(16) | 3780(17) | 1354(19) | 27(2)  | H(24) <sub>w</sub>  | 2( <i>i</i> ) | 1 | 105     | 165     | 292     | 4(2)  |
| O(21A)              | 2( <i>i</i> ) | 1 | 7918(19) | 2096(15) | 127(2)   | 23(2)  | N(1)                | 1( <i>a</i> ) | 1 | 5000    | 5000    | 5000    | 20(2) |
| O(31A)              | 2( <i>i</i> ) | 1 | 8700(20) | 2910(20) | 2919(15) | 29(2)  | H(11)               | 2( <i>i</i> ) | 1 | 461     | 461     | 461     | 5     |
| O(41A)              | 2( <i>i</i> ) | 1 | 7118(15) | 3760(20) | 207(20)  | 23(2)  | H(21)               | 2( <i>i</i> ) | 1 | 460     | 550     | 508     | 5     |
| S(4)                | 2( <i>i</i> ) | 1 | 3090(1)  | 3090(1)  | 3089(1)  | 12(1)  | H(31)               | 2( <i>i</i> ) | 1 | 450     | 492     | 540     | 5     |
| O(14)               | 2( <i>i</i> ) | 1 | 2411(4)  | 2412(4)  | 2414(4)  | 42(1)  | H(41)               | 2( <i>i</i> ) | 1 | 492     | 540     | 450     | 5     |
| O(24)               | 2( <i>i</i> ) | 1 | 4207(3)  | 3127(4)  | 2658(4)  | 29(1)  | N(2)                | 1( <i>a</i> ) | 1 | 5000    | 0       | 0       | 20(2) |
| O(34)               | 2( <i>i</i> ) | 1 | 3123(4)  | 2645(4)  | 4202(4)  | 30(1)  | H(12)               | 2( <i>i</i> ) | 1 | 461     | -39     | -39     | 5     |
| O(44)               | 2( <i>i</i> ) | 1 | 2654(4)  | 4205(3)  | 3125(4)  | 30(1)  | H(22)               | 2( <i>i</i> ) | 1 | 460     | 50      | 8       | 5     |
| O(14A)              | 2( <i>i</i> ) | 1 | 3819(16) | 3732(17) | 3782(17) | 29(2)  | H(32)               | 2( <i>i</i> ) | 1 | 450     | -8      | 40      | 5     |
| O(24A)              | 2( <i>i</i> ) | 1 | 2910(1)  | 2104(16) | 3740(1)  | 28(2)  | H(33)               | 2( <i>i</i> ) | 1 | 492     | 40      | -51     | 5     |
| O(34A)              | 2( <i>i</i> ) | 1 | 2109(15) | 3740(1)  | 2920(19) | 23(2)  | N(3)                | 2( <i>i</i> ) | 1 | 0       | 5000    | 0       | 19(1) |
| O(44A)              | 2( <i>i</i> ) | 1 | 3770(19) | 2930(19) | 2119(15) | 22(2)  | H(13)               | 2( <i>i</i> ) | 1 | 39      | 539     | 39      | 5     |
| S(5)                | 2( <i>i</i> ) | 1 | 1909(1)  | 8090(1)  | 3089(1)  | 12(1)  | H(23)               | 2( <i>i</i> ) | 1 | 40      | 450     | -8      | 5     |
| O(15)               | 2(i)          | 1 | 2585(4)  | 7414(4)  | 2408(4)  | 42(1)  | H(33)               | 2( <i>i</i> ) | 1 | 50      | 508     | -40     | 5     |
| O(25)               | 2( <i>i</i> ) | 1 | 2351(4)  | 9202(3)  | 3123(4)  | 30(1)  | H(43)               | 2( <i>i</i> ) | 1 | 8       | 460     | 50      | 5     |
| O(35)               | 2( <i>i</i> ) | 1 | 792(4)   | 8128(4)  | 2658(4)  | 31(1)  | N(4)                | 1( <i>a</i> ) | 0 | 0       | 0       | 50      | 20(1) |
| O(45)               | 2( <i>i</i> ) | 1 | 1873(4)  | 7657(4)  | 4210(4)  | 30(1)  | H(14)               | 2( <i>i</i> ) | 1 | 39      | 39      | 539     | 5     |

751

|                              |               |   |                |                |                              |                   |                     | П             | р | одолж               | кение                | табл                | ı. 2                  |
|------------------------------|---------------|---|----------------|----------------|------------------------------|-------------------|---------------------|---------------|---|---------------------|----------------------|---------------------|-----------------------|
| 1                            | 2             | 3 | 4              | 5              | 6                            | 7                 | 1                   | 2             | 3 | 4                   | 5                    | 6                   | 7                     |
| O(15A)                       | 2( <i>i</i> ) | 1 | 1438(18)       | 8970(15)       | 3752(17)                     | 29(2)             | H(24)               | 2( <i>i</i> ) | 1 | 40                  | -50                  | 492                 | 5                     |
| O(25A)                       | 2( <i>i</i> ) | 1 | 1239(19)       | 7917(19)       | 2126(15)                     | 23(2)             | H(34)               | 2( <i>i</i> ) | 1 | 50                  | 8                    | 460                 | 5                     |
| O(35A)                       | 2( <i>i</i> ) | 1 | 2054(19)       | 7115(15)       | 3750(20)                     | 22(2)             | H(44)               | 2( <i>i</i> ) | 1 | 8                   | -40                  | 550                 | 5                     |
| דיי דיי                      |               |   |                |                |                              |                   |                     |               |   |                     |                      |                     |                       |
| $M_{1}^{3+}$                 | 1             | 1 | 0(4)           | 6(4)           | 15(5)                        | 3,3(3)            | O(1)                |               |   | 8070(11)            | 2428(13)             | 4179(9)             | 30(2)                 |
| M <sub>2</sub> <sup>3+</sup> | 1             |   | 5000(4)        | 2(4)           | 5016(5)                      | 3,4(3)            | O(2)                |               |   | 7549(12)            | 844(9)               | 3092(11)            | 28(1)                 |
| M <sub>3</sub> <sup>3+</sup> |               |   | -6(4)          | 5008(4)        | 5018(5)                      | 3,3(3)            | O(3)                |               |   | 9184(9)             | 1841(11)             | 2647(14)            | 32(2)                 |
| M <sub>4</sub> <sup>3+</sup> |               |   | 5004(4)        | 5005(4)        | 18(5)                        | 3,3(3)            | O(4)                |               |   | 7373(13)            | 2471(11)             | 2355(13)            | 39(2)                 |
| O(1) <sub>w</sub>            |               |   | -1557(10)      | -152(11)       | -141(10)                     | 16(1)             | S(5)                |               |   | 1905(3)             | 8090(3)              | 6922(3)             | 12(1)                 |
| $H(1)_{1w}$                  |               |   | -188           | -38            | -69                          | 5                 | O(1)                |               |   | 2545(11)            | 7302(10)             | 7535(10)            | 18(2)                 |
| $H(2)_{1w}$                  |               |   | -194           | -31            | 28                           | 5                 | O(2)                |               |   | 1813(12)            | 7733(11)             | 5773(9)             | 17(2)                 |
| O(2) <sub>w</sub>            |               |   | 1573(10)       | 154(11)        | 174(10)                      | 158(10)           | O(3)                |               |   | 773(10)             | 8089(13)             | 7342(13)            | 17(1)                 |
| H(1) <sub>2w</sub>           |               |   | 196            | 392            | 80                           | 5                 | O(4)                |               |   | 2245(11)            | 9257(9)              | 6840(12)            | 16(1)                 |
| H(2) <sub>2w</sub>           |               |   | 201            | 27             | -33                          | 5                 | O(15A)              |               |   | 1250(20)            | 881(2)               | 6230(20)            | 17(1)                 |
| O <sub>3w</sub>              |               |   | 166(10)        | -1567(10)      | 165(11)                      | 15(1)             | O(25A)              |               |   | 2080(30)            | 7119(19)             | 6260(30)            | 16(1)                 |
| H(1) <sub>3w</sub>           |               |   | 766            | -199           | 33                           | 5                 | O(35A)              |               |   | 1190(30)            | 7940(30)             | 7860(20)            | 15(2)                 |
| H(2) <sub>3w</sub>           |               |   | -34            | -202           | 29                           | 5                 | O(45A)              |               |   | 2918(18)            | 8670(3)              | 7130(30)            | 16(1)                 |
| $O(4)_w$                     |               |   | -150(10)       | 1568(10)       | -143(11)                     | 15(1)             | S(6)                |               |   | 6905(3)             | 6916(3)              | 3105(3)             | 12(1)                 |
| $H(1)_{4w}$                  |               |   | -75            | 178            | -37                          | 5                 | O(16)               |               |   | 6910(10)            | 7453(11)             | 4159(8)             | 26(2)                 |
| $H(2)_{4w}$                  |               |   | 37             | 202            | -24                          | 5                 | O(26)               |               |   | 5838(9)             | 6893(12)             | 2581(13)            | 30(1)                 |
| $O(5)_{w}$                   |               |   | -155(11)       | 150(10)        | 1584(10)                     | 15(1)             | O(36)               |               |   | 7308(14)            | 5793(9)              | 3148(12)            | 31(2)                 |
| H(1),                        |               |   | -45            | 73             | 183                          | 5                 | 0(46)               |               |   | 7644(13)            | 7628(13)             | 2534(13)            | 39(2)                 |
| H(2)                         |               |   | -26            | -36            | 205                          | 5                 | S(7)                |               |   | 1904(3)             | 6909(3)              | 1927(3)             | 12(1)                 |
| $\Omega(6)$                  |               |   | 152(11)        | -158(10)       | -1545(10)                    | 15(1)             | O(17)               |               |   | 2278(13)            | 5776(9)              | 1927(3)<br>1886(12) | 30(2)                 |
| $H(1)_{c}$                   |               |   | 24             | 33             | -200                         | 5                 | O(27)               |               |   | 821(9)              | 6909(11)             | 2438(12)            | 27(2)                 |
| H(2).                        |               |   | 36             | _75            | _184                         | 5                 | O(27)               |               |   | 1818(10)            | 7283(13)             | 786(0)              | $\frac{2}{2}$ (2)     |
| $\Omega(7)$                  |               |   | 50<br>6575(10) | -75<br>130(11) | -10 <del>4</del><br>4871(10) | 15(1)             | O(37)               |               |   | 2577(13)            | 7203(13)<br>7470(10) | 2707(10)            | 30(2)<br>37(2)        |
| $U(1)_{W}$                   |               |   | 705            | 26             | 529                          | 5                 | O(+7)               |               |   | 2080(2)             | 1011(2)              | 1027(2)             | $\frac{37(2)}{12(1)}$ |
| $\Pi(1)_{7_{W}}$             |               |   | 705            | 20             | 422                          | 5                 | O(18)               |               |   | 3069(3)             | 820(0)               | 1927(3)             | 12(1)                 |
| $\Pi(2)_{7W}$                |               |   | 085            | 20<br>171(11)  | 433<br>5177(10)              | $\frac{5}{15(1)}$ | O(18)               |               |   | 2370(12)            | 829(9)               | 1009(12)            | 29(2)                 |
| $U(8)_{W}$                   |               |   | 3450(10)       | -1/1(11)       | 5177(10)                     | 15(1)             | O(28)               |               |   | 3119(12)<br>4220(0) | 2313(14)             | 807(9)              | 32(2)                 |
| $H(1)_{8w}$                  |               |   | 317<br>205     | -52            | 507<br>470                   | 5                 | O(38)               |               |   | 4229(8)             | 1825(10)             | 2209(12)            | 28(2)                 |
| $H(2)_{8w}$                  |               |   | 305            | -15            | 4/0                          | 5                 | 0(48)               |               |   | 2344(14)            | 2469(15)             | 2643(13)            | 4/(2)                 |
| $O(9)_{w}$                   |               |   | 4862(11)       | 154(10)        | 344/(10)                     | 15(1)             | $O(25)_{w}$         |               |   | /994(12)            | 4525(12)             | 1415(12)            | 27(2)                 |
| $H(1)_{9w}$                  |               |   | 463            | 72             | 309                          | 5                 | $H(1)_{25w}$        |               |   | 789                 | 392                  | 165                 | 5                     |
| $H(2)_{9w}$                  |               |   | 484            | -34            | 309                          | 5                 | $H(2)_{25w}$        |               |   | 802                 | 515                  | 188                 | 5                     |
| $O(10)_{w}$                  |               |   | 5171(11)       | -159(10)       | 6580(10)                     | 15(1)             | $O(26)_{\rm w}$     |               |   | 1376(11)            | 3012(12)             | 9564(12)            | 27(2)                 |
| $H(1)_{10w}$                 |               |   | 533            | 49             | 700                          | 5                 | $H(1)_{26w}$        |               |   | 188                 | 287                  | 981                 | 5                     |
| $H(2)_{10w}$                 |               |   | 538            | -74            | 694                          | 5                 | $H(2)_{26w}$        |               |   | 132                 | 283                  | 901                 | 5                     |
| $O(11)_{w}$                  |               |   | 5148(10)       | -1547(10)      | 4865(11)                     | 15(1)             | $O(27)_w$           |               |   | 8592(11)            | 6994(12)             | 478(12)             | 27(2)                 |
| $H(1)_{11w}$                 |               |   | 556            | -184           | 468                          | 5                 | $H(1)_{27w}$        |               |   | 835                 | 705                  | 108                 | 5                     |
| $H(2)_{11w}$                 |               |   | 456            | -207           | 474                          | 5                 | $H(2)_{27w}$        |               |   | 803                 | 692                  | -17                 | 5                     |
| O(12) <sub>w</sub>           |               |   | 4837(10)       | 1583(10)       | 5168(11)                     | 15(1)             | O(28) <sub>w</sub>  |               |   | 460(12)             | 3597(12)             | 2015(12)            | 27(2)                 |
| $H(1)_{12w}$                 |               |   | 433            | 180            | 541                          | 5                 | $H(1)_{28w}$        |               |   | 5                   | 302                  | 215                 | 5                     |
| $H(2)_{12w}$                 |               |   | 539            | 192            | 536                          | 5                 | $H(2)_{28w}$        |               |   | 103                 | 335                  | 205                 | 5                     |
| O(13) <sub>w</sub>           |               |   | -1566(10)      | 5154(11)       | 4881(10)                     | 15(1)             | O(29) <sub>w</sub>  |               |   | 1987(12)            | 5440(12)             | 8632(12)            | 27(2)                 |
| $H(1)_{13w}$                 |               |   | -203           | 531            | 543                          | 5                 | $H(1)_{29w}$        |               |   | 213                 | 510                  | 813                 | 5                     |
| $H(2)_{13w}$                 |               |   | -193           | 525            | 428                          | 5                 | $H(2)_{29w}$        |               |   | 215                 | 598                  | 835                 | 5                     |
| O(14) <sub>w</sub>           |               |   | 1561(10)       | 4846(11)       | 5192(10)                     | 15(1)             | O(30) <sub>w</sub>  |               |   | -462(12)            | 6384(12)             | 8022(12)            | 27(2)                 |
| H(1) <sub>14w</sub>          |               |   | 194            | 465            | 465                          | 5                 | H(1) <sub>30w</sub> |               |   | 6                   | 693                  | 792                 | 5                     |

|                     |   |   |                 |                      |                  |                   |                     | 11 | p | одолж                       | кение           | табл            | I. 2              |
|---------------------|---|---|-----------------|----------------------|------------------|-------------------|---------------------|----|---|-----------------------------|-----------------|-----------------|-------------------|
| 1                   | 2 | 3 | 4               | 5                    | 6                | 7                 | 1                   | 2  | 3 | 4                           | 5               | 6               | 7                 |
| H(2) <sub>14w</sub> |   |   | 197             | 471                  | 571              | 5                 | H(2) <sub>30w</sub> |    |   | -91                         | 657             | 791             | 5                 |
| O(15) <sub>w</sub>  |   |   | -159(10)        | 3425(10)             | 4873(11)         | 15(1)             | O(31) <sub>w</sub>  |    |   | 6395(11)                    | 2002(12)        | 491(12)         | 27(2)             |
| H(1) <sub>15w</sub> |   |   | -71             | 313                  | 457              | 5                 | H(1) <sub>31w</sub> |    |   | 672                         | 211             | 101             | 5                 |
| $H(2)_{15w}$        |   |   | 39              | 300                  | 473              | 5                 | $H(2)_{31w}$        |    |   | 691                         | 224             | 2               | 5                 |
| O(16) <sub>w</sub>  |   |   | 153(10)         | 6560(10)             | 5178(11)         | 15(1)             | O <sub>32w</sub>    |    |   | 7029(13)                    | 9542(13)        | 1421(12)        | 31(4)             |
| $H(1)_{16w}$        |   |   | 71              | 681                  | 543              | 5                 | $H(1)_{32w}$        |    |   | 722                         | 897             | 168             | 5                 |
| $H(2)_{16w}$        |   |   | -37             | 692                  | 517              | 5                 | $H(2)_{32w}$        |    |   | 729                         | 995             | 215             | 5                 |
| $O(17)_w$           |   |   | -132(11)        | 4839(10)             | 6579(10)         | 15(1)             | O <sub>33w</sub>    |    |   | 3610(11)                    | 8015(12)        | 9571(12)        | 27(2)             |
| $H(1)_{17w}$        |   |   | -27             | 531                  | 695              | 5                 | H(1)33              |    |   | 335                         | 781             | 900             | 5                 |
| $H(2)_{17w}$        |   |   | -37             | 434                  | 671              | 5                 | $H(2)_{33w}$        |    |   | 311                         | 785             | 991             | 5                 |
| O(18) <sub>w</sub>  |   |   | 166(11)         | 5150(10)             | 3448(10)         | 15(1)             | O(34) <sub>w</sub>  |    |   | 4514(12)                    | 8595(11)        | 2027(12)        | 27(3)             |
| $H(1)_{18w}$        |   |   | 29              | 467                  | 305              | 5                 | $H(1)_{34w}$        |    |   | 496                         | 803             | 215             | 5                 |
| $H(2)_{18w}$        |   |   | 43              | 576                  | 318              | 5                 | $H(2)_{34w}$        |    |   | 393                         | 834             | 208             | 5                 |
| O(19) <sub>w</sub>  |   |   | 5152(10)        | 6587(10)             | -148(11)         | 15(1)             | O(35) <sub>w</sub>  |    |   | 3036(11)                    | 460(11)         | 8629(12)        | 24(3)             |
| $H(1)_{19w}$        |   |   | 453             | 702                  | -232             | 5                 | $H(1)_{35w}$        |    |   | 290                         | 108             | 832             | 5                 |
| $H(2)_{19w}$        |   |   | 581             | 686                  | -35              | 5                 | $H(2)_{35w}$        |    |   | 312                         | 4               | 831             | 5                 |
| O(20) <sub>w</sub>  |   |   | 4835(10)        | 3451(10)             | 164(11)          | 15(1)             | O(36) <sub>w</sub>  |    |   | 5425(11)                    | 3620(11)        | 3026(11)        | 23(3)             |
| $H(1)_{20w}$        |   |   | 424             | 309                  | 25               | 5                 | $H(1)_{36w}$        |    |   | 507                         | 315             | 281             | 5                 |
| $H(2)_{20w}$        |   |   | 537             | 308                  | 32               | 5                 | $H(2)_{36w}$        |    |   | 604                         | 328             | 282             | 5                 |
| O(21) <sub>w</sub>  |   |   | 3428(10)        | 5141(11)             | 161(10)          | 15(1)             | O(37) <sub>w</sub>  |    |   | 361(1)                      | 699(1)          | 458(1)          | 27(1)             |
| $H(1)_{21w}$        |   |   | 315             | 534                  | 75               | 5                 | $H(1)_{37w}$        |    |   | 321                         | 710             | 493             | 5                 |
| $H(2)_{21w}$        |   |   | 292             | 516                  | -39              | 5                 | $H(2)_{37w}$        |    |   | 319                         | 714             | 391             | 5                 |
| O(22) <sub>w</sub>  |   |   | 6557(10)        | 4836(11)             | -145(10)         | 15(1)             | O(38) <sub>w</sub>  |    |   | 3012(12)                    | 4523(13)        | 3629(12)        | 28(1)             |
| $H(1)_{22w}$        |   |   | 682             | 460                  | -68              | 5                 | $H(1)_{38w}$        |    |   | 296                         | 402             | 344             | 5                 |
| $H(2)_{22w}$        |   |   | 703             | 469                  | 39               | 5                 | $H(2)_{38w}$        |    |   | 270                         | 496             | 313             | 5                 |
| $O(23)_{w}$         |   |   | 5152(11)        | 5146(10)             | 15/8(10)         | 15(2)             | $O(39)_{w}$         |    |   | 280                         | 6406(12)        | /01/(13)        | 52(4)             |
| $H(1)_{23w}$        |   |   | 535<br>520      | 5/3                  | 188              | 5<br>5            | $H(1)_{39w}$        |    |   | 389                         | 672             | 705             | 5                 |
| $H(2)_{23w}$        |   |   | 529<br>4951(11) | 400                  | 198              | $\frac{5}{15(2)}$ | $H(2)_{39w}$        |    |   | 490                         | 093<br>5441(12) | (11)            | 29(1)             |
| $U(24)_{W}$         |   |   | 4851(11)        | 4830(10)             | -1554(10)<br>197 | 15(2)             | $U(40)_{w}$         |    |   | 0998(12)<br>704             | 5441(12)<br>407 | 6414(12)        | 28(1)             |
| $\Pi(1)_{24w}$      |   |   | 404             | 420<br>527           | -187             | 5                 | $\Pi(1)_{40w}$      |    |   | 704                         | 497             | 677             | 5                 |
| $\Pi(2)_{24w}$      |   |   | 409<br>6007(2)  | 227<br>2002(2)       | -197             | $\frac{3}{12(1)}$ | $\Pi(2)_{40w}$      |    |   | 72 <del>4</del><br>6401(11) | 002             | 5501(12)        | $\frac{3}{27(1)}$ |
| O(11)               |   |   | 7520(11)        | 7338(10)             | 7453(12)         | 13(1)<br>10(1)    | $U(41)_{W}$         |    |   | 666                         | 207             | 5301(12)<br>607 | 27(1)             |
| O(21)               |   |   | 6864(14)        | 7530(10)<br>7640(13) | 9224(10)         | 17(1)             | H(2).               |    |   | 608                         | 277             | 504             | 5                 |
| O(21)               |   |   | 5823(10)        | 8068(12)             | 7583(13)         | 16(1)             | $\Pi(2)_{41w}$      |    |   | 8594(12)                    | 270<br>8016(12) | 5472(13)        | 27(1)             |
| O(3)                |   |   | 7283(12)        | 9226(10)             | 8140(14)         | 18(1)             | $H(1)_{42w}$        |    |   | 800                         | 783             | 506             | 5                 |
| O(1A)               |   |   | 664(2)          | 9085(17)             | 871(2)           | 18(1)             | $H(2)_{42w}$        |    |   | 830                         | 791             | 612             | 5                 |
| O(2A)               |   |   | 702(3)          | 716(2)               | 882(2)           | 15(1)             | $O(43)_{W}$         |    |   | 1379(12)                    | 2011(12)        | 4561(13)        | 27(1)             |
| O(3A)               |   |   | 7905(17)        | 870(2)               | 789(3)           | 17(1)             | $H(1)_{43w}$        |    |   | 171                         | 211             | 495             | 5                 |
| O(4A)               |   |   | 624(3)          | 793(3)               | 715(2)           | 15(1)             | $H(2)_{43w}$        |    |   | 158                         | 178             | 404             | 5                 |
| S(2)                |   |   | 3086(3)         | 3096(3)              | 6925(3)          | 12(1)             | $O(44)_{w}$         |    |   | 2001(12)                    | -484(12)        | 3629(12)        | 27(1)             |
| O(12)               |   |   | 2625(14)        | 4206(10)             | 6895(14)         | 17(1)             | $H(1)_{44w}$        |    |   | 205                         | -112            | 337             | 5                 |
| O(22)               |   |   | 4241(10)        | 3143(14)             | 7277(12)         | 17(1)             | $H(2)_{44w}$        |    |   | 204                         | 13              | 320             | 5                 |
| O(32)               |   |   | 3171(12)        | 2756(11)             | 5758(9)          | 16(1)             | O(45) <sub>w</sub>  |    |   | -466(12)                    | 8596(12)        | 3028(12)        | 28(1)             |
| O(42)               |   |   | 2463(11)        | 2442(11)             | 7690(11)         | 18(1)             | $H(1)_{45w}$        |    |   | -106                        | 827             | 284             | 5                 |
| O(12A)              |   |   | 2141(19)        | 3800(20)             | 7080(30)         | 15(1)             | $H(2)_{45w}$        |    |   | 16                          | 825             | 304             | 5                 |
| O(22A)              |   |   | 3750(20)        | 2940(30)             | 7896(19)         | 16(1)             | O(46) <sub>w</sub>  |    |   | 446(12)                     | 1378(12)        | 7015(12)        | 28(1)             |
| O(32A)              |   |   | 2900(30)        | 2099(18)             | 6310(30)         | 16(1)             | H(1) <sub>46w</sub> |    |   | 83                          | 160             | 711             | 5                 |
| O(42A)              |   |   | 3750(20)        | 3840(20)             | 6270(20)         | 17(1)             | H(2) <sub>46w</sub> |    |   | -8                          | 185             | 714             | 5                 |
| S(3)                |   |   | 8084(3)         | 3089(3)              | 8106(3)          | 12(1)             | O(47) <sub>w</sub>  |    |   | 8018(12)                    | 434(12)         | 6411(12)        | 27(1)             |
| O(13)               |   |   | 7417(11)        | 2299(10)             | 7530(11)         | 19(1)             | H(1) <sub>47w</sub> |    |   | 798                         | -9              | 682             | 5                 |

ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ. 2015. Т. 56, № 4

~

|        |   |   |          |          |          |       |                     |   |   | Оконч    | нание    | таол     | I. Z  |
|--------|---|---|----------|----------|----------|-------|---------------------|---|---|----------|----------|----------|-------|
| 1      | 2 | 3 | 4        | 5        | 6        | 7     | 1                   | 2 | 3 | 4        | 5        | 6        | 7     |
| O(23)  |   |   | 9238(10) | 3174(13) | 7761(12) | 17(1) | H(2) <sub>47w</sub> |   |   | 779      | 98       | 671      | 5     |
| O(33)  |   |   | 8059(12) | 2591(13) | 9193(10) | 17(1) | O(48) <sub>w</sub>  |   |   | 5432(11) | 1381(12) | 8037(12) | 27(3) |
| O(43)  |   |   | 7592(13) | 4187(10) | 8134(14) | 17(1) | $H(1)_{48w}$        |   |   | 498      | 199      | 782      | 5     |
| O(13A) |   |   | 8810(20) | 3660(20) | 8860(20) | 17(1) | $H(2)_{48w}$        |   |   | 606      | 162      | 787      | 5     |
| O(23A) |   |   | 7130(20) | 3780(30) | 7980(30) | 15(1) | N(1)                |   |   | 0(2)     | 5050(20) | 20(20)   | 20(2) |
| O(33A) |   |   | 7950(30) | 2130(20) | 8800(30) | 15(1) | N(2)                |   |   | 5010(20) | 0(20)    | -30(20)  | 20(2) |
| O(43A) |   |   | 8800(20) | 2940(30) | 7170(20) | 15(1) | N(3)                |   |   | 5010(20) | 5010(20) | 4980(20) | 19(2) |
| S(4)   |   |   | 8085(3)  | 1910(3)  | 3104(3)  | 12(1) | N(4)                |   |   | 0(2)     | 40(20)   | 4980(20) | 20(2) |

## Таблица З

~

Важнейшие расстояния d (Å), углы  $\omega$  (град.) и заселенности позиций р в структуре I

| Π                                                      | Пространственная группа |                     |                      |                     |  |  |  |  |  |  |
|--------------------------------------------------------|-------------------------|---------------------|----------------------|---------------------|--|--|--|--|--|--|
| Параметр                                               | $Pa\overline{3}$        | $R\overline{3}$     | $P\overline{1}$      | <i>P</i> 1          |  |  |  |  |  |  |
| <i>d</i> (M <sup>3+</sup> —O)                          | 1,9399(14)              | 1,936(2)—1,939(2)   | 1,934(2)—1,940(3)    | 1,920(7)—1,957(7)   |  |  |  |  |  |  |
| $\alpha(\mathbf{O} \mathbf{M} \mathbf{O}')$            | 80.21(6)                | 1,938(cp.)          | 1,938(cp.)           | 1,938(cp.)          |  |  |  |  |  |  |
| $\omega(\mathbf{O}_{w} - \mathbf{M} - \mathbf{O}_{w})$ | 89,51(0)                | 89,5(1), 89,55(10)  | 89,10(12)-89,55(12)  | 88,7(3)-89,9(3)     |  |  |  |  |  |  |
|                                                        |                         | Геометрия сульфатнь | іх групп             |                     |  |  |  |  |  |  |
| <i>d</i> (S—O(1))                                      | 1,439(4)                | 1,438(3); 1,455(6)  | 1,436(4)—1,442(4)    | 1,446; 1,440(cp.)** |  |  |  |  |  |  |
| d(S—O(2))*                                             | 1,4686(19)              | 1,468(3)—1,471(3)   | 1,464(3)—1,471(3)    | 1,473; 1,461(cp.)** |  |  |  |  |  |  |
| d(S—O(1A))                                             | 1,34(3)                 | 1,458(11); 1,459(6) | 1,454(11)461(11)     | 1,455 (cp.)         |  |  |  |  |  |  |
| d(S - O(2A))                                           | 1,455(11)               | 1,452(10)—1,464(10) | 1,448(11)-1,469(11)  | 1,456 (cp.)         |  |  |  |  |  |  |
| $\omega(O(1) - S - O(1A))$                             | 180                     | 180; 169,7(9)       | 163,3(10); 164,1(11) | 156,9(9); 169,4(9)  |  |  |  |  |  |  |
|                                                        |                         |                     | 171,9(11); 176,1(10) | 175,7(9); 176,8(10) |  |  |  |  |  |  |
| <i>d</i> (NO(1A))                                      | 2,721(4)                | 2,636(4)            | 2,608-2,708          | 2,626—2,769         |  |  |  |  |  |  |
| $d(NO_w)$                                              | 3,034(4)                | 3,031-3,037(3)      | 3,028-3,035          | 2,962—3,134         |  |  |  |  |  |  |
| p                                                      | 0,866(8)                | 0,871(4); 0,860(7)  | 0,873(4); 0,876(4)   | 0,791(6); 0,796(6)  |  |  |  |  |  |  |
|                                                        |                         |                     | 0,869(4); 0,874(4)   | 0,796(6); 0,829(6)  |  |  |  |  |  |  |

\* В пр. гр.  $R\overline{3}$ ,  $P\overline{1}$  и P1 символом O(2) обозначены атомы кислорода SO<sub>4</sub>-группы, которые в пр. гр.  $Pa\overline{3}$  находятся в общей позиции.

\*\* Атомы О относятся к упорядоченным сульфатным группам.



*Рис. 1.* Фрагменты 0kl(a) и 1kl(b) проекций обратного пространства кристалла I

2

Наблюдаются также нарушения дополнительных условий погасания рентгеновских отражений, связанных с позициями Вайкоффа 4(*a*) и 4(*b*). На рис. 1,  $\delta$  видны рефлексы, индексы которых дают нечетные суммы h + k = 2n + 1, h + l = 2n + 1 и l + k = 2n + 1. Эти запрещенные отражения несовместимы с симметрией особых позиций Вайкоффа 4(*a*) и 4(*b*). В результате исключения этого элемента симметрии тригональная решетка переходит в изометрическую триклинную.

Последовательные исключения элементов симметрии в пространственных группах  $Pa\overline{3}$  и  $R\overline{3}$  соответствуют снижению симметрии кристаллической решетки по цепочке максимальных подгрупп  $Pa\overline{3} > R\overline{3} > P\overline{1} > P1$  с индексом 24. С целью изучения поведения ориентационного беспорядка сульфатной группы кристаллическая структура I решалась во всех этих пространственных группах.

Значение величины  $\langle |E^2 - 1| \rangle$  в случае кубической решетки равно 0,990, и оно больше, чем в случае центросимметричных кристаллических структур (0,968). Параметр сходимости интенсивностей эквивалентных отражений  $R_{int}$  в различных пространственных группах отличается друг от друга незначительно (см. табл. 1).

Исключения элементов симметрии кристаллической решетки должно привести к образованию двойникования в кристалле. Рассчитанные значения доли двойников в различных пространственных группах равны: 0,335 в  $Pa\overline{3}$ , 0,560 в  $R\overline{3}$ , 0,491 в  $P\overline{1}$  и 0,550 в P1. Определить закон двойникования с помощью программы Platon нам не удалось. В предположении, что в кристаллической структуре I имеет место псевдомероэдрическое двойникование, в качестве элемента двойникования были испробованы ось симметрии 2 (во всех группах) и центр инверсии (в пространственной группе P1). При этом эти элементы симметрии не привели к снижению значения R-фактора.

Для решения вопроса о центросимметричности кристалла I нами проведено оптическое исследование кристалла на предмет обнаружения генерации второй оптической гармоники. Опыты проведены на кристалле I с длиной 3 мм с использованием иттербиевого твердотельного лазера с диодной накачкой и спектрометра ASP-150TF в режиме накопления сигнала в течение ~1,5 с. Интенсивность лазерного излучения составляла ~6.10<sup>5</sup> Вт.см<sup>-2</sup>, длина основного излучения  $\lambda_1 \approx 1059$  нм, длительность одиночных световых импульсов на полувысоте ~70 фс, частота повторения импульсов ~75 Гц, поляризация — линейная, мода — TEM<sub>00</sub>.

### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Взаимное замещение катионов Fe<sup>3+</sup> и Al<sup>3+</sup> в узлах кристаллической решетки, естественно, отражается на параметрах элементарной ячейки кристалла. Значение a = 12,263(3) Å лежит между значениями параметров кристаллов однородных квасцов (NH<sub>4</sub>)Al(SO<sub>4</sub>)<sub>2</sub>·12H<sub>2</sub>O (12,242(1) Å) [9] и природного минерала лоункрикит (NH<sub>4</sub>)Fe<sub>0,75</sub>Al<sub>0,25</sub>(SO<sub>4</sub>)<sub>2</sub>·12H<sub>2</sub>O (12,302 Å) [10].

Кристаллическая структура I изоморфна структуре однородных квасцов, построена из октаэдров  $[M(H_2O)_6]^{3+}$  (M = Fe<sup>3+</sup> и Al<sup>3+</sup>), анионов SO<sub>4</sub><sup>2-</sup>, катионов NH<sub>4</sub><sup>+</sup> и кристаллизационных молекул воды. Эти субъединицы структуры объединены в трехмерную структуру межмолекулярными H-связями.

Усредненный по двум металлам катион  $[M(H_2O)_6]^{3+}$  показывает практически регулярное строение, что обусловлено тем обстоятельством, что как катион Fe<sup>3+</sup>, так и катион Al<sup>3+</sup> в кристаллах образуют регулярные октаэдрические гексааква-ионы. В пространственной группе  $Pa\overline{3}$  эти катионы находятся на инверсионной оси 3-го порядка (позиция 4(*a*)), реализуя также собственную ось симметрии третьего порядка (см. табл. 1). При переходе к максимальным подгруппам катион  $[M(H_2O)_6]^{3+}$  сохраняет собственную геометрию. Расстояния М—O<sub>w</sub> во всех случаях равны 1,940 Å (см. табл. 2). Это значение больше, чем расстояние Al—O<sub>w</sub> в NH<sub>4</sub>Al(SO<sub>4</sub>)<sub>2</sub>·12H<sub>2</sub>O 1,883(1) Å [ 10 ], NaAl(SO<sub>4</sub>)<sub>2</sub>·12H<sub>2</sub>O 1,881(1) Å [ 11 ], KAl(SO<sub>4</sub>)<sub>2</sub>·12H<sub>2</sub>O 1,908(8) Å [ 12 ], и меньше, чем расстояние Fe—O<sub>w</sub> в сульфате железа(III)-аммония 1,997(3) Å [ 13 ].

754

Как и в однородных квасцах, сульфатная группа в I распределена в двух ориентациях, "перевернутых" относительно атома S: в основной с бо́льшей заселенностью (~87 %) и дополнительной — с меньшей (~13 %) (см. табл. 2). В такой же степени ориентационный беспорядок наблюдается и в NH<sub>4</sub>Al(SO<sub>4</sub>)<sub>2</sub>·12H<sub>2</sub>O. В пр. гр.  $Pa\overline{3}$  атомы S и O(1) основной ориентации и атом O(1A) дополнительной расположены на оси вращения 3 (позиция 8(*c*)). Атом O(1A) в структуре I, как и в кристаллических структурах других квасцов, показывает большие параметры смещения.

В работе [11] это явление было изучено для ряда однородных квасцов при различных температурах. Однако причины этого явления не рассматривались. В работе [3] кристаллическую структуру  $K(Al_{0,95}Cr_{0,05})(SO_4)_2 \cdot 12H_2O$  рассматривали в триклинной пространственной группе  $P\overline{1}$ . Аномально большие значения параметров смещения атома O(1A) объясняли небольшими флюктуациями в ориентации сульфатной группы.

Угол O(1)—S—O(1A) является метрикой флюктуации в ориентации тетраэдра SO<sub>4</sub>. В пространственной группе  $Pa\overline{3}$  атомы S, O(1) и O(1A) находятся на оси 3. В максимальных подгруппах пространственной группы  $Pa\overline{3}$  сульфатная группа переходит в общую позицию и становится возможным наблюдение отклонения этого угла от 180°: 169,7(9)° в пространственной группе  $R\overline{3}$  и в интервалах значений 163,3(10)—176,1(10)° и 156,9(9)—176,8(10)° в пространственной группах  $P\overline{1}$  и P1 соответственно (см. табл. 3).

В нецентросимметричной пространственной группе *P*1 усредняющие действия кристаллографических элементов симметрии отсутствуют и в четырех из восьми позиций (эквивалентных в кубической метрике) сульфатные группы находятся только в одной ориентации, а в остальных четырех распределены в двух ориентациях (рис. 2).



*Рис. 2.* Упорядоченные и разупорядоченные сульфатные анионы в пр. гр. *Р*1 (для простоты атомы Н не показаны)

Атом N аммонийной группы в пространственной группе  $Pa\overline{3}$  расположен в частной позиции 4(b) на оси  $\overline{3}$ , что не согласуется с собственной симметрией тетраэдра NH<sup>+</sup><sub>4</sub>. Центросимметричное окружение атома N обусловлено ориентационным беспорядком аммонийной группы в двух взаимно противоположных ориентациях с атомом N в кристаллографическом центре симметрии. В каждой ориентации катион NH<sup>+</sup><sub>4</sub> участвует в трех H-связях N—H...O<sub>w</sub>(2) с тремя молекулами H<sub>2</sub>O, которые расположены вокруг оси симметрии 3 (см. рис. 2). Тетраэдр NH<sup>+</sup><sub>4</sub> сжат вдоль оси вращения 3. Симметрично расположенные шесть молекул воды благодаря своим водородным связям "вынуждают" катион аммония принимать две противоположные ориентации. Четвертая H-связь аммонийной группы типа N—H...O(1A) образуется с соседней группой SO<sub>4</sub>, расположенной в дополнительной ориентации.

В пространственной группе P1 катионы  $NH_4^+$  расположены между двумя сульфатными группами, одна из них имеет основную ориентацию, а вторая разупорядочена по двум ориентациям. В отличие от **I**, в кристаллической структуре  $NH_4Al(SO_4)_2 \cdot 12H_2O$  [9] катион  $NH_4^+$  распределен в двух позициях 24(d) возле центра инверсии с равными заселенностями.

Лазерные исследования кристаллов I показали, что кристалл генерирует вторую оптическую гармонику (529,5 нм) при прохождении через него цуга чирпированных световых импульсов иттербиевого твердотельного лазера с диодной накачкой ( $\lambda_1 \approx 1059$  нм), что согласуется с кристаллографическими данными о псевдосимметричности кристалла I.

Отметим, что спектр излучения второй гармоники, так же как и спектр основного излучения лазера, имеет хорошо выраженную колоколообразную форму, однако наблюдается заметное сужение ширины спектра второй гармоники на уровне 0,5 амплитуды. При этом коэффициент преобразования основного излучения в кристалле во вторую гармонику по энергии составляет ~ $10^{-3}$ ÷ $10^{-4}$ .

#### выводы

В результате проведенных исследований установлено, что:

*a*) в части позиций кристаллической структуры сульфатные группы расположены в одной ориентации;

б) наблюдается флюктуация в ориентации сульфатных групп, расположенных в дополнительной ориентации;

e) в центросимметричных пространственных группах катион  $NH_4^+$  занимает кристаллографический центр симметрии, который не соответствует собственной симметрии катиона;

*г*) кристалл I генерирует вторую оптическую гармонику.

СІГ-файл, содержащий все структурные данные по всем четырем пространственным группам, депонирован в ССDС под номером 999683-999686 (www.ccdc.cam.ac.uk/data\_requist/cif).

Автор выражает глубокую признательность к.ф.-м.н. С.А. Талипову и к.х.н. Ж.А. Ашурову (Институт биоорганической химии АН РУз) за рентгеноструктурный эксперимент и д.ф.-м.н., проф. А.К. Каххарову (Институт теплофизики АН РУз) за лазерные исследования.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Cooke A.H. // Proc. Roy. Soc. 1949. A62, N 2. P. 269 276.
- 2. Штукенберг А.Г., Франк-Каменецкая О.В., Баннова И.И. и др. // Кристаллография. 2000. **45**, № 6. С. 999 1005.
- 3. Рождественская И.В., Франк-Каменецкая О.В., Штукенберг А.Г, Баннова И.И. // Журн. структур. химии. 2001. **42**, № 4. С. 753 765.
- 4. *Лабутина М.Л., Марычев М.О.* Материалы оптоэлектроники и лазерные технологии. ВМНШ 2007. Саранск, 2007.
- 5. Lipson H. // Proc. Roy. Soc. 1935. A151. P. 347 356.

- 6. Oxford Difraction Ltd. CrysAlisPro. Version. 1.171.33.44, 2009.
- 7. Sheldrick G.M. SHELX-97, Program for Crystal Structure Refinement, Göttingen (Germany): Univ. of Göttingen, 1997.
- 8. Sheldrick G.M. // Acta Crystallogr. 2008. A64, N 1. P. 112 122.
- 9. Abdeen A.M., Will G., Schafer W., Kirfel A., Bargouth M.O., Recker K., Weiss A. // Z. Kristallogr. 1981. 157, N 1. S. 147 166.
- 10. Martini J.E.J. // Ann. Geol. Surv. S. Africa. 1983. 17. P. 29 34.
- 11. Cromer D.T., Kay M.I., Larson A.C. // Acta Crystallogr. 1967. B22, N 2. P. 182 187.
- 12. Larson A.C., Cromer D.T. // Acta Crystallogr. 1967. 22, N 6. P. 793 799.
- 13. Palmer K.J., Wong R.Y., Lee K.S. // Acta Crystallogr. 1972. B28, N 1. P. 236 241.
- 14. Kay M.I., Cromer D.T. // Acta Crystallogr. 1970. B26, N 9. P. 1349 1355.