2015. Том 56, № 3

Май – июнь

C. 457 – 465

УДК 539.196

СПЕКТРЫ КОМБИНАЦИОННОГО РАССЕЯНИЯ И СТРОЕНИЕ СИСТЕМ (1 - x)RbNO₃ + xAl₂O₃

М.М. Гафуров¹, К.Ш. Рабаданов¹, М.Б. Атаев¹, А.Р. Алиев², А.М. Амиров¹, З.Ю. Кубатаев¹

¹Аналитический центр коллективного пользования ДНЦ РАН, Махачкала, Россия E-mail: malik52@mail.ru ²Институт физики им. Х.И. Амирханова ДНЦ РАН, Махачкала, Россия

Статья поступила 20 марта 2013 г.

С доработки — 8 июня 2014 г.

Методом комбинационного рассеяния (КР) исследованы структурно-динамические свойства нитрата рубидия RbNO₃ и его гетерогенных композитов с наноразмерным порошком оксида алюминия Al₂O₃ при различных температурах, фазовых состояниях и концентрациях нанопорошка Al₂O₃. При больших концентрациях ($x \ge 0,5$) наполнителя Al₂O₃ в спектре КР гетерогенной системы обнаруживается дополнительная компонента с максимумом при $v_1^c \sim 1049 \text{ см}^{-1}$, которая может быть отнесена к колебаниям NO₃⁻, ло-кализованным в приповерхностной области наночастиц Al₂O₃. Также при больших концентрациях ($x \ge 0,5$) наполнителя Al₂O₃ исчезают спектральные проявления фазовых переходов кристаллического нитрата рубидия RbNO₃. Это свидетельствует о кардинальном изменении микроструктуры гетерогенной системы по сравнению с гомогенной.

DOI: 10.15372/JSC20150304

Ключевые слова: нитрат рубидия, оксид алюминия, спектры комбинационного рассеяния, автокорреляционная функция.

введение

В последние годы существенно возрос интерес к исследованиям гетерогенных систем на основе ионных солей, допированных порошками оксидов различных металлов. Он прежде всего обусловлен тем, что в таких системах, как впервые было показано в работе С. Лианга, наблюдается эффект увеличения ионной проводимости соли при гетерогенном наполнении инертным оксидом [1]. Исследования подобных систем расширяются как в плане совершенствования методик синтеза композиционных твердых электролитов (ионная соль + оксид), так и в комплексном изучении их физико-химических свойств, при варьировании состава ионной соли и оксида, температурного режима и фазового состояния композиционной системы [2]. Дальнейшие исследования композиционных ионных систем, конечно, имеют важное прикладное значение в поиске новых твердых электролитов для использования в различных электрохимических устройствах, оптимизации технологий их синтеза. Вместе с тем не менее плодотворным представляется подход, основанный на детальном и более глубоком исследовании конкретной гетерогенной системы с привлечением современных методов физико-химического анализа материалов, чтобы на атомно-молекулярном уровне понять причины роста ионной проводимости в таких системах. Примером такого подхода может служить спектроскопическое исследование нитратного стекла, "наполненного" порошком оксида алюминия [3], в котором сделана попытка на молекулярном уровне детализовать механизм ионного переноса и объяс-

[©] Гафуров М.М., Рабаданов К.Ш., Атаев М.Б., Алиев А.Р., Амиров А.М., Кубатаев З.Ю., 2015

нить причины резкого увеличения ионной проводимости в гетерофазном нитратном стекле. Аналогичные исследования впервые начаты применительно к жидкофазным электролитам, с добавками инертных оксидных порошков [4]. Оказалось, что и в жидких электролитах наноразмерные оксидные частицы также влияют на их структурно-динамические свойства. Иными словами, оптимизация ионпроводящих свойств жидкофазных электролитов может быть осуществлена путем их наполнения наноразмерными оксидными добавками, что чрезвычайно интересно с прикладной точки зрения, имея в виду, что в большинстве случаев жидкие электролиты играют роль активных электрохимических сред в химических источниках тока.

Ионный проводник — это система, в которой перенос заряда осуществляется катионами, анионами или более сложными заряженными ионными комплексами. Совершенно очевидно, что перемещение заряженной частицы в ионной системе сопровождается структурными изменениями в ее локальном окружении как следствие нарушения компенсации электростатических сил взаимодействия с ближайшими соседями, т.е. микроструктура ионной системы непрерывно изменяется в результате трансляционных и ориентационных движений кинетических единиц. Поскольку эти движения в конденсированной среде осуществляются в пикосекундных временных интервалах принципиально важно для изучения подобных процессов выбрать экспериментальные методы исследования, способные фиксировать динамические процессы, протекающие в указанных временных интервалах. С этих позиций наиболее информативным в плане получения сведений о структурно-динамических свойствах и релаксационных процессах, протекающих в ионном проводнике, являются методы колебательной спектроскопии.

Целью настоящей работы является спектроскопическое исследование нитрата рубидия, "наполненного" порошком оксида алюминия (1 - x)RbNO₃ + (x)Al₂O₃, направленное на получение детальной информации о микроструктуре, характере межчастичных динамических взаимодействий и релаксационных процессах в таких системах при различных температурах нанокомпозиционного твердого электролита в широком интервале концентраций *x* нанопорошка Al₂O₃.

Нитрат рубидия обладает развитым полиморфизмом, и в этом плане он интересен, поскольку появляется возможность сравнительного анализа его свойств как композиционного твердого электролита в различных фазовых состояниях. Более того, колебательный спектр чистого нитрата рубидия изучен достаточно детально [5—11], а спектры внутренних колебаний молекулярного аниона NO_3^- могут быть использованы в качестве информационных зондов для извлечения сведений по интересующим нас вопросам.

При комнатной температуре стабильна тригональная (псевдогексагональная [5]) фаза IV нитрата рубидия, пространственная группа C_{3v^2} (*P*31*m*, *P*3₁ или *P*3₂) с девятью молекулами в элементарной ячейке (*Z* = 9), в которой нитрат-ионы строго ориентированны. При нагревании в RbNO₃ наблюдается четыре фазовых перехода: IV \leftrightarrow IV', IV' \leftrightarrow III (кубическая решетка, структурный тип CsCl, *Pm*3*m*, *Z* = 1), III \leftrightarrow II (ромбоэдрическая, *R*3*m*, *Z* = 1) и II \leftrightarrow I (кубическая решетка, структурный тип NaCl, *Fm*3*m*, *Z* = 4) при 73°C (346 K), 164°C (437 K), 219°C (492 K) и 286°C (559 K) соответственно. Плавится нитрат рубидия при 310°C (583 K). Переход IV \leftrightarrow IV' при 73°C (346 K), обнаруженный недавно [12], проявляется как слабое искажение структуры, не приводящее к изменению класса симметрии кристаллов. Остальные переходы известны давно и сопровождаются большими изменениями энтропии и энтальпии [13].

Кристаллическая структура фазы IV получается небольшой деформацией кубической решетки фазы III с небольшим (5 %) изменением объема. Принципиальное различие между ними лишь в том, что в низкотемпературной фазе IV анионы обладают ориентационной упорядоченностью. При переходе в фазу III возникает ориентационный беспорядок, о чем говорят наибольшие изменения энтальпии и энтропии, происходящие при данном фазовом переходе. При этом происходит резкий рост проводимости [12].

Исследование проводимости композитов на основе нитрата рубидия [14] показало, что допирование оксидом алюминия с удельной поверхностью 270 м²/г сопровождается резким возрастанием проводимости.

Для корректного отнесения измеренных спектров комбинационного рассеяния (КР) порошков также крайне желательно привести в начале имеющиеся в литературе данные о КР спектрах монокристалла фазы IV RbNO₃ и результаты фактор-группового анализа [5—11]. Нитрат-ион в свободном состоянии имеет точечную группу симметрии D_{3h} и его колебательные движения представляются как:

$$\Gamma(D_{3h}) = A_1^{|} + A_2^{||} + 2E^{|}, \tag{1}$$

из которых $A_1^{|}$ и $E^{|}$ активны в КР, а $A_2^{||}$ и $E^{|}$ активны в инфракрасном (ИК) поглощении. Кристаллический нитрат рубидия имеет внешние колебания E_g с частотами 112 и 136 см⁻¹ [5]. Наилучшее имеющееся описание кристалла RbNO₃ дают две точечные симметрии C_s и C_{3v} для нитрат-иона; C_{3v} : 708 см⁻¹ (E), 810 см⁻¹ (A_1), 1033 см⁻¹ (A_1), 1395 см⁻¹ (E) и C_s : 720 см⁻¹ ($A^{|}$), 831 см⁻¹ ($A^{||}$), 1050 см⁻¹ ($A^{|}$), 1344 см⁻¹ ($A^{|}$), 1416 см⁻¹ ($A^{|}$). С понижением точечной симметрии нитрат-иона от D_{3h} до C_{3v} симметрии колебаний преобразуется следующим образом: $A_1^{|} \rightarrow A_1$; $A_2^{||} \rightarrow A_1$; $E^{|} \rightarrow E$. Типы колебаний $A_1^{|}$ и E активны как в спектрах КР, так и в ИК спектрах. Каждая из характеристических колебательных мод изолированного нитрат-иона приводит к девяти модам в кристалле. Очевидно, что не все эти компоненты проявляются в спектрах [5].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза композиционных электролитов на основе нитрата рубидия были взяты нанокристаллические оксиды алюминия (γ -Al₂O₃ ~ 95 %) с величиной удельной поверхности $S_{yg} = 120 \text{ м}^2/\text{г}$ и размером ~15—25 нм. Синтез исследуемых образцов проводили по керамической методике. Дегидратированный при 350 °C нитрат рубидия тщательно перемешивали с оксидной добавкой в инертной атмосфере. Оксид алюминия также прогревали при 300 °C в течение 2 ч. Далее полученные смеси спекались при 350 °C в течение 30 мин, быстро охлаждали и запаивали в ампулы из пирекса.

Спектры комбинационного рассеяния чистой соли и композиционных систем измеряли на конфокальном КР микроскопе Senterra при лазерном возбуждении ($\lambda = 785$ нм; мощность лазера 100 мВт); апертура 50×1000 мкм; спектральный диапазон 75—1530 см⁻¹ с разрешением 3— 5 см⁻¹; используемый объектив микроскопа — 10×; число сканов — 20; время интегрирования каждого скана — 20 с.

Для разделения сложных контуров КР на компоненты использовали программный пакет OPUS 6.0 фирма Brukeroptics.

Температурные измерения проводили с использованием специальной нагревательной ячейки в диапазоне температур от 20 до 200 °C.

В настоящей работе мы детально проанализировали форму контура $v_1(A)$ в спектре КР исследуемых систем. Выбор этой линии не случаен, она соответствует полносимметричному колебанию аниона NO_3^- , обладает наиболее узкой зоной среди остальных внутримолекулярных колебаний, и потому наиболее чувствительна к изменениям силовых полей возмущающих нитрат-ион в композиционных системах. Более того, указанная линия в спектре КР является резко поляризованной, и форма его контура всецело определяется процессами колебательной релаксации NO_3^- . При расчетах мы сочли возможным применить к исследуемым объектам известные выводы теории ширины колебательных полос в спектрах жидких систем. Мы исходили из того, что композиционные твердые электролиты — это неупорядоченные системы с достаточно развитой ориентационной и трансляционной подвижностью кинетических единиц, и потому причины, обуславливающие релаксацию колебательных возбуждений молекулярного иона в них, близки к таковым в жидкой фазе.

Из теории известно, что описание динамики релаксационных процессов в конденсированных средах проводится с использованием временных корреляционных функций (ВКФ), обозначаемых $G_i(t)$ [15]. Колебательная ВКФ $G_{\text{кол}}(t)$ может быть представлена как Фурье-образ нормированных компонент изотропного контура $I_{\mu_3}(v)$ в следующем виде [16]:

$$G_{\text{KOJ}}(t) = \frac{1}{I_{\text{int}}} \int_{-\infty}^{+\infty} I_{\text{H3}}(v) \exp(2\pi i c v t) dv.$$
⁽²⁾

Поэтому получение информации о процессах колебательной релаксации в ионных системах основывается на анализе изотропных компонент поляризованных линий, соответствующих полносимметричным колебаниям молекулярных ионов. При этом форма изотропного контура в спектре КР связана как с адиабатическими процессами, приводящими только к дефазировке колебаний, так и неадиабатическими взаимодействиями, при которых энергия колебательного возбуждения молекулярного иона передается ближайшим соседям в результате соударений и столкновений. Поскольку в ионных системах ближайшими соседями молекулярного аниона являются катионы, то очевидно вероятность резонансного обмена энергией колебательного возбуждения между анионами ничтожно мала, и потому можно считать, что основной причиной релаксации колебательных возбуждений NO_3^- является колебательная дефазировка.

Дефазировка колебаний молекулярного иона в ионной системе может произойти по двум главным причинам: 1) как следствие упругих столкновений с ближайшими соседями за счет случайных изменений расстояний и углов между частицами при неизменном характере самого локального окружения; 2) в результате диффузионного перехода молекулярного иона в "новое" локальное положение. Эти процессы в ионных конденсированных системах протекают с различными скоростями, обуславливая однородное и неоднородное уширение изотропных полос спектра КР [17, 18]. Полная ВКФ с учетом однородного и неоднородного уширения может быть записана в следующем виде:

где

$$G_{\text{кол}}(t) = F_{\text{од}}(t) \cdot F_{\text{неод}}(t) , \qquad (3)$$

$$F_{\rm op}(t) = \exp\left\{-\Delta\omega_{\rm op}^2 [\tau_{\rm c}^2(e^{-t/\tau_{\rm c}}-1) + \tau_{\rm c}t]\right\},\tag{4}$$

$$F_{\text{Heod}}(t) = \exp\left\{-\frac{1}{2}\Delta\omega_{\text{Heod}}^2 t^2\right\}.$$
(5)

Функции $F_{oq}(t)$ и $F_{Heoq}(t)$ характеризуют скорости фазовой модуляции частоты; $-\Delta\omega_{oq}^2$ и $\Delta\omega_{Heoq}^2$ — средние квадраты флуктуации частоты, вызванные указанными выше процессами; τ_c — время корреляции. Из уравнений (2)—(4), используя экспериментально найденные значения $G_{Kon}(t)$, а также имея в виду, что второй спектральный момент изотропного контура $M_{Kon}(2) = -\Delta\omega_{oq}^2 + \Delta\omega_{Heoq}^2$, были оценены значения $\Delta\omega_{oq}^2$, $\Delta\omega_{Heoq}^2$ и τ_c путем подбора параметров в уравнениях (3)—(5) методом наименьших квадратов. Исходя из значений величин $\Delta\omega_{oq}^2$ и $\Delta\omega_{Heoq}^2$, были оценены вклады однородного $\delta_{oq} = 4\pi c - \Delta\omega_{oq}^2 \tau_c$ и неоднородного $\delta_{Heoq} = 2(2\ln 2)^{1/2} \cdot \Delta\omega_{Heoq}$ уширения линии $v_1(A)$ в спектре КР композитов нитрата рубидия различного состава, при различных температурах и фазовых состояниях.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены спектры КР чистого нитрата рубидия и его композитов с Al_2O_3 при различных температурах, фазовых состояниях и концентрациях наноразмерного оксида алюминия. Из рисунка видно, что полоса $v_1(A)$ в спектре КР чистого нитрата рубидия имеет дополнительный компонент со стороны меньших волновых чисел, интенсивность которой возрастает по мере повышения температуры низкотемпературной кристаллической фазы.

Появление подобных линий не предсказуемо в рамках традиционных правил отбора для кристаллов и объясняется наложением спектра разупорядоченных анионов (повернутых в плоскости вокруг оси C_3 на 30°) на спектр упорядоченного кристалла [9]. Высокочастотная

Рис. 1. Спектры КР композитов (1 - x)RbNO₃ – xAl₂O₃ в области полносимметричного валентного колебания нитрат-иона и результаты их разложения на компоненты с частотами $v_1^a \sim 1058 \text{ см}^{-1}$ (1), $v_1^b \sim 1055 \text{ см}^{-1}$ (2), $v_1^c \sim 1049 \text{ см}^{-1}$ (3) при температурах 25, 100 и 200 °С (*a*)

компонента $v_1^a \sim 1058 \text{ см}^{-1}$ соответствует колебаниям упорядоченных, а низкочастотная компонента $v_1^b \sim 1055 \text{ см}^{-1}$ — колебаниям ориентационно-разупорядоченных анионов NO_3^- в кристаллической решетке нитрата рубидия. При этом высокочастотная компонента хорошо описывается гауссовой функцией, в то время как форма низкочастотной компоненты близка к дисперсионной. При допировании RbNO₃ нанопорошком оксида алюминия до определенных концентраций Al₂O₃ спектр КР не испытывает сколько-нибудь заметных изменений. При более высоких концентрациях в спектре КР гетерогенной системы обнаруживается дополнительная компонента с максимумом при $v_1^c \sim 1049 \text{ см}^{-1}$, интенсивность которой возрастает по мере увеличения температуры и концентрации Al₂O₃. Очевидно, что обнаружение дополнительной компоненты в спектре КР композиционной системы связано с появлением в исследуемой системе нового типа NO_3^- , отличающегося от упорядоченных и разупорядоченных анионов характером силового окружения. Мы считаем, что указанная компонента в спектре КР может быть отнесена колебаниям NO₃, локализованным в приповерхностной области наночастиц твердого наполнителя. Характер релаксации колебательных возбуждений $v_1(A)$ различных типов молекулярных анионов показывает соответствующие временные корреляционные функции (ВКФ) систем (1-x)RbNO₃ + (x)Al₂O₃ при различных температурах и концентрациях инертного наполнителя (рис. 2).

Рассчитанные из наших экспериментальных данных значения времен колебательной релаксации моды $v_1(A)$ вклады однородного и неоднородного уширения компонент спектра КР для различных типов анионов систематизированы в таблице.

Как видно из результатов расчета значения времен колебательной релаксации для упорядоченных анионов существенно выше по сравнению с соответствующими значениями как для

Рис. 2. Временные корреляционные функции колебаний нитрат-ионов композитов (1-x)RbNO₃ – xAl₂O₃: $v_1^a \sim 1058 \text{ см}^{-1}$ (1), $v_1^b \sim 1055 \text{ см}^{-1}$ (2), $v_1^c \sim 1049 \text{ см}^{-1}$ (3) при температурах 25, 100 и 200 °C (*a*)

ориентационно-разупорядоченных, так и локализованных в приповерхностной области частиц Al_2O_3 анионов. Это означает, что время жизни локального окружения нитрат-иона в упорядоченной подсистеме кристалла $RbNO_3$ существенно больше по сравнению с другими типами анионов, которые характеризуются частым сбоем фазы колебательной моды $v_1(A)$, в результате упругих, динамических взаимодействий NO_3^- с ионами в ближайшем окружении и частицами оксида алюминия.

Анализируя температурно-фазовые изменения контура $v_1(A)$, следует заметить, что эти изменения существенно зависят от концентрации инертного наполнителя. В системе 0,5RbNO₃— 0,5Al₂O₃ с ростом температуры наблюдается постепенное уменьшение интегральной интенсивности высокочастотной компоненты $v_1(A)$, отнесенной колебаниям нитрат-ионов в упорядоченной фазе при одновременном росте интенсивности компоненты, связанной с колебаниями разупорядоченных анионов. При этом интенсивность низкочастотной компоненты (колебания приповерхностных анионов) остается практически мало подверженной температуре. Вероятно, для системы с таким соотношением концентрации соли и оксида имеет место главным образом термоактивация ориентационного разупорядочения, и этот процесс, как показывает эксперимент, завершается при температурах выше 190 °С. Несколько иная картина температурнофазовых изменений наблюдается в системе 0,3RbNO₃-0,7Al₂O₃. При таких соотношениях концентраций соли и оксида в отличие от системы 0,5RbNO₃-0,5Al₂O₃ высокочастотная компонента $v_1(A)$ регистрируется в спектре КР вплоть до температуры 200 °C, а ее форма становится близкой к дисперсионной. Иными словами, в системе 0,3RbNO₃—0,7Al₂O₃ упорядоченная фаза RbNO₃ сохраняется во всем исследованном интервале температур, при этом частота сбоя колебательной моды $v_1(A)$ возрастает. В то же самое время форма компоненты, отвечающая колебаниям разупорядоченных анионов, становится преимущественно гауссовой, т.е. неоднородно уширена. Таким образом, более высокие концентрации твердого наполнителя обеспечивают сохранение в системе $RbNO_3 + Al_2O_3$ всех трех типов анионов. Однозначно объяснить, почему так происходит, не представляется возможным, можно лишь предположить, что более плотная оксидная матрица в системе $0,3RbNO_3$ — $0,7Al_2O_3$ препятствует процессу ориентационного ра-

			 	, ,			
x (Al ₂ O ₃)	<i>t</i> , °C	ν, см ⁻¹	δ, см ⁻¹	τ, пс	τ _c , пс	δ_h , cm ⁻¹	δ_i , см ⁻¹
0	25	1058.56	3.7	3.64		0	3.7
-		1056.9	5.61	2.27	0.15	2.68	4.05
	100	1058,27	3.5	3,75		0	3.5
		1056,5	6,42	1,96	0,13	2,77	4,8
	200	1054	5,87	2,26	0,14	1,05	4,6
		1052,2	10,13	1,37	0,095	4,31	7,26
0,15	25	1058,6	3,52	3,74		0	3,52
		1055,5	6,1	1,7	0,16	6,1	0
	100	1058,1	3,63	3,68		0	3,63
		1055,1	6,45	1,63	0,15	7	0
	200	1055	5,62	2,36	0,1	2,5	4,77
		1052	10,5	1,26	0,09	5,89	6,4
0,5	25	1058	3,75	3,61	—	0	3,75
		1055,6	7,2	1,86	0,115	2,96	5,51
		1049,6	9	1,42	0,1	5,48	5,45
	100	1058	3,57	3,7		0	3,57
		1055,6	7,71	1,79	0,105	2,62	6,02
		1049,6	8,67	1,31	0,105	7,85	2,78
	200	—			—	—	—
		1054,5	7,06	1,9	0,115	2,77	5,49
		1049,5	9,41	1,22	0,1	8,67	2,8
0,7	25	1056,2	7,25	1,67	0,12	5,05	4,02
		1051,38	5,9	2,55	0,125	0,277	5,75
		1047,2	8,6	1,25	0,11	9,3	0
	100	1056	7,35	1,67	0,12	5	4,18
		1051,5	5,8	2,27	0,14	2,27	4,53
		1047,9	9,47	1,145	0,1	10,3	0
	200	1055,7	8,56	1,41	0,105	6,41	4,24
		1051,2	6,88	2,24	0,11	0,168	6,79
		1046,9	10,69	1,01	0,09	11,82	0

Спектральные и релаксационные характеристики колебания $v_1(A'_1)$ нитрат-иона в композитах (1-x)RbNO₃ – xAl₂O₃

_

зупорядочения. Этим же можно объяснить заметное различие времен колебательной релаксации и вкладов однородного и неоднородного уширения компонент в системах (1-x)RbNO₃ + +(x)Al₂O₃ при различных концентрациях инертного наполнителя (см. таблицу).

Что касается спектральных характеристик компонент $v_1(A)$ в спектрах КР исследуемых систем, то при малых концентрациях Al_2O_3 температурно-фазовые зависимости частот и полуширин колебаний компонент $v_1(A)$ идентичны таковым в чистом нитрате рубидия: линейное смещение максимума полосы в сторону меньших волновых чисел и скачкообразное уменьшение при температуре фазового перехода; незначительное уширение полосы с ростом температуры в упорядоченной фазе и заметное увеличение полуширины при фазовом переходе (рис. 3). При больших концентрациях оксида алюминия исчезают характерные для фазового перехода скачкообразные изменения спектральных характеристик. Очевидно, при больших концентрациями Al_2O_3 , не оставляют и следов идентичности кристаллической структуре чистого нитрата рубидия.

Рис. 3. Зависимости частот и полуширин компонент: $v_1 \sim 1058 \text{ см}^{-1}(a)$, $v_1 \sim 1055 \text{ см}^{-1}(\delta)$ в композитах (1 - x)RbNO₃ – xAl₂O₃ от температуры

Наши данные хорошо согласуются с результатами по электропроводности и ДСК [19]. В слабо разбавленных (x = 0,10 и 0,30) гетерогенных системах наблюдаются скачки электропроводности и термические эффекты при фазовом переходе, а в сильно разбавленной (x = 0,70) гетерогенной системе электропроводность меняется плавно и термические эффекты ослабевают.

ЗАКЛЮЧЕНИЕ

В настоящей работе исследованы методом спектроскопии КР структурно-динамические свойства кристаллического нитрата рубидия RbNO₃ и его гетерогенных композитов с наноразмерным порошком оксида алюминия Al₂O₃ при различных температурах, фазовых состояниях и концентрациях нанопорошка Al₂O₃. Показано, что при больших концентрациях ($x \ge 0,5$) наполнителя Al₂O₃ в спектре КР гетерогенной системы обнаруживается дополнительная компонента с максимумом при $v_1^c \sim 1049 \text{ см}^{-1}$. Предполагаем, что указанная компонента в спектре КР может быть отнесена колебаниям NO₃⁻, локализованным в приповерхностной области наночастиц твердого наполнителя Al₂O₃. Также при больших концентрациях ($x \ge 0,5$) наполнителя Al₂O₃ исчезают скачкообразные изменения спектральных характеристик при температурах, соответствующих фазовым переходам в гомогенном (x = 0) кристаллическом нитрате рубидия RbNO₃. Это свидетельствует о кардинальном изменении микроструктуры гетерогенной системы по сравнению с гомогенной.

Работа выполнена на оборудовании Аналитического центра коллективного пользования Дагестанского научного центра РАН при финансовой поддержке гранта Российского фонда фундаментальных исследований (№ 13-03-00384_а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Liang C.C. // J. Electrochem. Soc. 1973. 120. P. 1289.
- 2. Уваров Н.Ф. // Успехи химии. 2007. 76, № 5. С. 454.
- 3. Гафуров М.М., Рабаданов К.Ш. // Журн. структур. химии. 2009. 50, № 2. С. 262.
- 4. Гафуров М.М., Рабаданов К.Ш., Атаев М.Б. и др. // Журн. прикл. спектр. 2013. 80, № 5. С. 781.
- 5. James D.W., Leong W.H. // J. Chem. Phys. 1968. 49, N 11. P. 5089.

- 6. Karpov S.V., Shultin A.A. // Phys. Stat. Sol. 1970. 39. P. 33.
- 7. Delvin J.P., James D.W. // Chem. Phys. Lett. 1970. 7, N 2. P. 237.
- 8. Brooker M.H. // J. Chem. Phys. 1970. **59**, N 11. P. 5828.
- 9. Карпов С.В., Шултин А.А. // ФТТ. 1975. 17, № 10. С. 2868.
- 10. Fernandes J.R., Ganguly S., Rao C.N.R. // Spectrochim. Acta. 1979. 35A. P. 1013.
- 11. Гаджиев А.З., Гафуров М.М., Кириллов С.А. // Журн. прикл. спектроскоп. 1980. 33, № 6. С. 1085.
- 12. Уваров Н.Ф., Улихин А.С., Искакова А.А. и др. // Электрохимия. 2011. 47, № 4. С. 429.
- 13. Парсонидж Н.Г., Стейвли Л.А. Беспорядок в кристаллах. М.: Мир, 1982.
- 14. Uvarov N.F., Vanek P., Yuzyuk Yu.I. et al. // Solid State Ionics. 1996. 90. P. 201.
- 15. Nafie L.A., Peticolas W.L. // J. Chem. Phys. 1972. 57, N 8. P. 3145.
- 16. Погорелов В.Е., Лизенгевич А.И., Кондиленко И.И. и др. // УФН. 1979. 127, № 4. С. 683.
- 17. Kato T., Takenaka T. // Mol. Phys. 1982. 46, N 2. P. 257.
- 18. Гафуров М.М., Ахмедов И.Р., Алиев А.Р. // Журн. прикл. спектроскоп. 1990. 52, № 3. С. 429.
- 19. Уваров Н.Ф., Пономарева В.Г., Лаврова Г.В. // Электрохимия. 2010. 46, № 7. С. 772.