АНАЛИЗ И СИНТЕЗ СИГНАЛОВ И ИЗОБРАЖЕНИЙ

УДК 004.932.2

ОЦЕНИВАНИЕ ПАРАМЕТРОВ ЮСТИРОВКИ СКАНИРУЮЩЕГО УСТРОЙСТВА С МНОГОРЯДНЫМ ФОТОПРИЁМНИКОМ

Г. И. Громилин¹, В. П. Косых^{1,2}, К. В. Козлов³, В. Н. Васильев⁴

 ¹Институт автоматики и электрометрии СО РАН, 630090, г. Новосибирск, просп. Академика Коптюга, 1
 ²Новосибирский государственный университет, 630090, г. Новосибирск, ул. Пирогова, 2
 ³AO «Научно-производственное объединение "Орион"», 111538, Москва, ул. Косинская, 9
 ⁴AO «НИИ оптико-электронных приборов», 188540, г. Сосновый Бор Ленинградской обл., ул. Ленинградская, 29 E-mail: kosych@iae.nsk.su

Сканирующие приборы на основе многорядных фотоприёмников, обеспечивающие повышенное разрешение, предъявляют значительно более жёсткие требования к юстировке, чем приборы с однорядными приёмниками. Предложен новый способ измерения и оценивания скорости сканирования и угла ориентации многорядного фотоприёмника относительно направления сканирования — параметров, наиболее существенно влияющих на качество формируемого дискретного изображения. Способ основан на анализе изображения простого тест-объекта — оптической щели. Рассмотрен алгоритм оценивания этих параметров, обеспечивающий высокую точность оценок при достаточно слабых требованиях к качеству изображения тест-объекта. Точность оценок рассчитана аналитически и подтверждена посредством имитационного моделирования.

Ключевые слова: сканирующее устройство, матричный фотоприёмник, режим ВЗН, ориентация фотоприёмника, скорость сканирования.

DOI: 10.15372/AUT20170605

Введение. Применение в сканирующих устройствах многорядных фотоприёмных линеек, работающих в режиме временной задержки и накопления (ВЗН) [1], обеспечивает значительное повышение отношения сигнал/шум в регистрируемом изображении. При этом в отличие от приборов «смотрящего» типа в сканирующем приборе можно получить отсчёты с шагом, меньшим шага размещения фоточувствительных элементов (ФЧЭ) линейки, что значительно улучшает качество изображений «точечных» объектов, размеры которых сравнимы с размерами ФЧЭ [2]. Уменьшение шага вдоль направления сканирования достигается простым увеличением частоты отсчётов, а поперёк направления сканирования достигается простым увеличением частоты отсчётов, а поперёк направления сканирования — применением в фотоприёмнике нескольких линеек, взаимно смещённых в этом направлении [3, 4]. Однако, как показано в [5, 6], пространственное разнесение линеек, обусловленное топологией, обеспечивающей режим ВЗН, предъявляет весьма жёсткие требования к поддержанию номинальной скорости и ориентации фотоприёмника относительно направления сканирования. В связи с этим при юстировке сканирующего прибора, использующего матричный фотоприёмник с топологией, аналогичной описанной в [4], возникает необходимость в разработке способов более точного измерения параметров.

Puc. 1. Размещение фоточувствительных элементов в многорядном фотоприёмнике

Топология фотоприёмника. Кратко напомним, как выглядит размещение фоточувствительных элементов в приёмнике [4]. На рис. 1 показано взаимное положение четырёх составляющих фотоприёмник субматриц. Каждая субматрица содержит N вертикальных столбцов ФЧЭ, которые работают в режиме ВЗН. Ось OY' собственной прямоугольной системы координат направлена вдоль ВЗН-каналов и при идеальной юстировке должна совпадать с направлением сканирования. Частота отсчётов вдоль оси OX' обеспечивается необходимым количеством соответствующим образом смещённых субматриц (в данном случае — четырьмя). Смещение k-й субматрицы в этом направлении обозначено r_k , шаг между каналами — r. Положение субматриц в направлении OY' задано смещениями h_k .

Пренебрегая «смазом» изображения, вызванным его сканированием относительно Φ ЧЭ, образующих ВЗН-канал, далее будем рассматривать каждую субматрицу как обычную линейку с вертикальной координатой h_k . В работах [5, 6] показано, что именно значительная разница между h_k , обусловленная наличием ВЗН-каналов, приводит к необходимости соблюдения более жёстких, чем для близко расположенных линеек, требований к скорости сканирования и ориентации приёмника.

Формирование изображения тестового объекта. Измерение скорости движения и угла ориентации такого фотоприёмника в сканирующем устройстве в данной работе основывается на применении простого инструмента — оптической щели, изображение которой проектируется оптической системой сканера в плоскость фоточувствительных элементов. Единственное требование, предъявляемое к щели, — её длина должна быть достаточной для того, чтобы изображение перекрывало значительную часть фотоприёмника поперёк направления сканирования. При этом к точности установки щели особых требований не предъявляется. Рассмотрим, как формируются координаты изображения щели в сканере.

На рис. 2 OXY — система координат сканера, ось OY задаёт направление сканирования. Пусть система координат фотоприёмника OX'Y' повёрнута относительно OXY на

Рис. 2. Взаимное положение фотоприёмника и изображения щели в системе координат сканера

угол β. В системе координат сканера координаты *i*-го элемента *k*-й линейки имеют вид

$$x_{k,i} = x'_{k,i} \cos\beta - y'_{k,i} \sin\beta = (r_k + ir) \cos\beta - h_k \sin\beta;$$

$$y_{k,i} = x'_{k,i} \sin\beta + y'_{k,i} \cos\beta = (r_k + ir) \sin\beta + h_k \cos\beta.$$
(1)

Если продольная ось изображения щели в системе координат сканера в начальный момент представлена уравнением

$$y = c + x \operatorname{tg} \alpha, \tag{2}$$

то при скорости сканирования v изображение щели достигнет i-го элемента k-й линейки в момент

$$t_{k,i} = \frac{1}{v} \left[y(x_{k,i}) - y_{k,i} \right] \approx \frac{1}{v_0} \left[y(x_{k,i}) - y_{k,i} \right] (1-u).$$

Здесь v_0 — номинальная скорость сканирования, $v = v_0(1+u)$, u — относительное отклонение скорости от номинального значения. Предполагается, что $u \ll 1$, тогда справедливо последнее приближение.

Соответственно координата щели, измеряемая *i*-м элементом *k*-й линейки, вычисляется как

$$d_{k,i} = t_{k,i}v_0 = [y(x_{k,i}) - y_{k,i}](1-u).$$
(3)

Если угол ориентации приёмника удовлетворяет условию $\beta \ll 1$, из (3) с учётом (1) и (2), ограничиваясь линейными членами разложения по u и β , можно получить

$$d_{k,i} = c(1-u) - [h_k - (r_k + ir) \operatorname{tg} \alpha] + [h_k - (r_k + ir) \operatorname{tg} \alpha]u - [h_k \operatorname{tg} \alpha + r_k + ir)\beta.$$
(4)

Оценивание параметров юстировки. Для оценивания отклонения скорости сканирования от номинала и угла ориентации приёмника необходимо выполнить два измерения. Сначала установим щель с малым углом наклона $\alpha = \alpha_1 \ll 1$ к оси OX сканера так, что $y \approx c_1 + x\alpha_1$. С учётом малости u, β и α_1 выражение (4) можно записать как

$$\tilde{c}_1 + h_k u + (r_k + ir)(\alpha_1 + \beta) = d_{ki}^{(1)} + h_k, \quad i \in [i_1, i_2],$$
(5)

где $\tilde{c}_1 = c_1(1-u)$; $[i_1, i_2]$ — интервал каналов приёмника, перекрываемых изображением щели. Очевидно, что (5) представляет собой систему, состоящую из $4(i_2-i_1+1)$ линейных уравнений относительно трёх неизвестных: $\tilde{c}_1, u, \theta = (\alpha_1 + \beta)$, из которых интересно только u. К сожалению, угол ориентации приёмника β отдельно от α_1 здесь оценить не удаётся. Используя векторно-матричное представление (5)

.1

D.

$$\mathbf{P}\mathbf{a} = \mathbf{d}_1, \tag{5a}$$

где

$$\mathbf{P} = \begin{bmatrix} \vdots & \vdots & \vdots \\ 1 & h_0 & r_0 + ir \\ \vdots & \vdots & \vdots \\ 1 & h_1 & r_1 + ir \\ \vdots & \vdots & \vdots \\ 1 & h_2 & r_2 + ir \\ \vdots & \vdots & \vdots \\ 1 & h_3 & r_3 + ir \\ \vdots & \vdots & \vdots \\ \end{bmatrix}, \quad \mathbf{d}_1 = \begin{vmatrix} \vdots \\ d_{1,i}^{(1)} + h_1 \\ \vdots \\ d_{2,i}^{(1)} + h_2 \\ \vdots \\ d_{3,i}^{(1)} + h_3 \\ \vdots \\ \end{vmatrix}, \quad \mathbf{a} = \begin{bmatrix} \tilde{c}_1 \\ u \\ \theta \end{bmatrix},$$

оценку неизвестных согласно методу наименьших квадратов с учётом некоррелированности измерений получим в виде

$$\hat{\mathbf{a}} = (\mathbf{P}^T \mathbf{P})^{-1} \mathbf{P}^T \mathbf{d}_1.$$
(6)

При этом среднеквадратичная ошибка (СКО) оценки â будет равна, как известно [7, § 4a],

$$\delta a_m = \sqrt{(\mathbf{P}^T \mathbf{P})_{mm}^{-1} \sigma_1^2}, \qquad \sigma_1^2 = \frac{\mathbf{d}_1^T \mathbf{d}_1 - \mathbf{d}_1^T \mathbf{P}^T (\mathbf{P}^T \mathbf{P})^{-1} \mathbf{P} \mathbf{d}_1}{4(i_2 - i_1 + 1) - 3}$$

В частности, СКО оценки относительного отклонения скорости сканирования от номинала запишем как

$$\delta u = \sqrt{(\mathbf{P}^T \mathbf{P})_{22}^{-1} \sigma_1^2}.$$
(7)

Оценив и скорректировав скорость сканирования до номинального значения, когда u = 0, второе измерение выполним для щели, установленной примерно под углом 45° к направлению сканирования. Тогда (2) примет вид

$$y = c_2 + x \operatorname{tg} g(\pi/4 + \alpha_2), \quad \alpha_2 \ll 1.$$

Учитывая условие tg $\alpha \approx (1 + 2\alpha_2)$, из (4) можно получить систему линейных уравнений относительно a_2 , β и α_2 :

$$c_2 - (h_k + r_k + ir)\beta + 2(r_k + ir)\alpha_2 = d_{ki}^{(2)} + h_k - r_k - ir, \quad i \in [i_3, i_4],$$
(8)

(r.)

٦

или в векторно-матричном представлении

$$\mathbf{Q}\mathbf{b} = \mathbf{d}_2,\tag{8a}$$

где

$$\mathbf{Q} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ 1 & -(h_0 + r_0 + ir) & 2(r_0 + ir) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & -(h_1 + r_1 + ir) & 2(r_1 + ir) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & -(h_2 + r_2 + ir) & 2(r_2 + ir) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & -(h_3 + r_3 + ir) & 2(r_3 + ir) \\ \vdots & \vdots & \vdots & \vdots \\ \end{bmatrix}, \quad \mathbf{d}_2 = \begin{bmatrix} \vdots \\ d_{1,i}^{(2)} + h_1 - r_1 - ir \\ \vdots \\ d_{2,i}^{(2)} + h_2 - r_2 - ir \\ \vdots \\ d_{3,i}^{(2)} + h_3 - r_3 - ir \\ \vdots \\ \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} a_2 \\ \beta \\ \alpha_2 \end{bmatrix}.$$

Г

В (8) интервал $[i_3, i_4]$ имеет тот же смысл, что $[i_1, i_2]$ в (5).

Аналогично предыдущему случаю

$$\hat{\mathbf{b}} = (\mathbf{Q}^T \mathbf{Q})^{-1} \mathbf{Q}^T \mathbf{d}_2, \tag{9}$$

а СКО оценки угла ориентации фотоприёмника —

$$\delta\beta = \sqrt{(\mathbf{Q}^T \mathbf{Q})_{22}^{-1} \sigma_2^2}, \qquad \sigma_2^2 = \frac{\mathbf{d}_2^T \mathbf{d}_2 - \mathbf{d}_2^T \mathbf{Q}^T (\mathbf{Q}^T \mathbf{Q})^{-1} \mathbf{Q} \mathbf{d}_2}{4(i_4 - i_3 + 1) - 3}.$$
 (10)

Результаты вычислительного эксперимента. Эксперимент состоит из следующих этапов.

1. С помощью имитационной модели сканирующего устройства [5] формируются две серии изображений щели, ориентированной в первой серии поперёк направления сканирования ($\alpha \approx 0$), а во второй — под углом к нему ($\alpha \approx \pi/4$). Изображения сопровождаются аддитивным некоррелированным нормальным шумом с СКО, составляющим 5 % от максимального значения сигнала от щели. Первая серия содержит изображения, в которых скорость сканирования изменяется в диапазоне ± 1 % от номинального значения ($-0,01 \leq u \leq 0,01$) и угол ориентации фотоприёмника — в диапазоне $\pm 0,8^{\circ}$ ($-0,0135 \leq \beta \leq 0,0135$). Во второй серии изображений скорость сканирования, угол ориентации фотоприёмника снова изменяется в диапазоне $\pm 0,8^{\circ}$ ($-0,0135 \leq \beta \leq 0,0135$), а угол наклона щели — в диапазоне $45 \pm 0,8^{\circ}$ ($-0,0135 \leq \alpha_2 \leq 0,0135$). Каждое изображение формируется 25 раз с новой реализацией шума.

2. Для каждого изображения первой серии параметры щели оцениваются согласно выражению (6), а для каждого изображения второй серии — согласно (9). В качестве координат $d_{k,i}$ используются оценки координаты максимумов квадратичного полинома, проходящего через три отсчёта (максимальный, соседние сверху и снизу) изображения в соответствующем столбце.

3. В первой серии для каждого значения пары независимых параметров (u, β) по 25 реализациям шума вычисляются среднее (\bar{u}) , СКО (s_u) и максимальное отклонение от значения, заданного при моделировании $(|\hat{u} - u|_{\text{max}})$, оценки u — отклонения скорости сканирования от номинала.

Puc. 3. Зависимости средних значений оценок параметров юстировки от условия формирования изображений: *a* — оценка отклонения скорости сканирования, *b* — оценка угла ориентации приёмника

$s_{u\max}$	$ \hat{u} - u _{\max}$	δu	$s_{\beta \max}$	$ \hat{eta} - eta _{\max}$	δeta
$2,76 \cdot 10^{-4}$	$7,51 \cdot 10^{-4}$	$3,46\cdot10^{-4}$	$9,40 \cdot 10^{-4}$	$7,50 \cdot 10^{-4}$	$1,57 \cdot 10^{-3}$
$1,01 \cdot 10^{-4}$	$4,07 \cdot 10^{-4}$	$1,10 \cdot 10^{-4}$	$2,65 \cdot 10^{-4}$	$4,28 \cdot 10^{-4}$	$3,\!81\cdot 10^{-4}$

4. Во второй серии для каждого значения пары независимых параметров (β, α_2) тоже по 25 реализациям шума вычисляются те же характеристики $(\bar{\beta}, s_{\beta}, |\hat{\beta} - \beta|_{\text{max}})$ оценки β — угла ориентации фотоприёмника.

5. Для сравнения согласно (7) и (10) вычисляются δu и $\delta \beta$ — теоретические значения СКО оценок u и β .

Рис. 3 показывает, что в выбранном диапазоне изменения скорости сканирования и углов ориентации щели и фотоприёмника вполне допустимы линейные приближения (5) и (8).

В таблице приведены характеристики оценок параметров юстировки, полученные в результате эксперимента со щелью, изображение которой при $\alpha \approx 0$ перекрывает 36 (первая строка таблицы) и 200 (вторая строка) каналов.

Заключение. В данной работе исследованы статистические характеристики оценок параметров юстировки сканирующего устройства, в котором для повышения разрешения поперёк направления сканирования применяется многорядный фотоприёмник с режимом ВЗН. Оценки получены в результате анализа изображений оптической щели, формируемых устройством. Показано, что при отношении сигнал/шум равном 20 даже на коротком изображении щели (36 отсчётов поперёк направления сканирования) достигаются достаточно высокая точность оценки отклонения скорости (~0,03 %) и удовлетворительная точность оценки угла ориентации фотоприёмника (~3 угл. мин). Увеличение длины щели, как и следовало ожидать, позволяет повысить точность оценок.

СПИСОК ЛИТЕРАТУРЫ

- Martin R. J., Riley G. E. Time division multiplexed time delay integration // Proc. SPIE. 1988. 930. P. 26–43. DOI: 10.1117/12.946625.
- 2. Иванов В. А., Киричук В. С., Косых В. П., Синельщиков В. В. Особенности обнаружения точечных объектов в изображениях, формируемых матричным приёмником // Автометрия. 2016. **52**, № 2. С. 10–19.

- 3. Бочков В. Д., Дражников Б. Н., Кузнецов П. А. и др. Особенности ФПУ с режимом ВЗН формата 1024 × 10 на основе КРТ // Прикладная физика. 2014. № 1. С. 58–61.
- 4. Кузнецов П. А., Мощев И. С., Сало В. В., Кощанцев Н. Ф. Фотоприёмные модули с режимом ВЗН для мониторинга земной поверхности в ИК-диапазоне // Успехи прикладной физики. 2014. **2**, № 6. С. 635–638.
- 5. Громилин Г. И., Иванов В. А., Косых В. П., Попов С. А. Имитационная модель сканирующего устройства на основе многорядного фотоприёмника с режимом ВЗН // Вычислительные технологии. 2016. **21**, № 1. С. 60–69.
- Громилин Г. И., Дражников Б. Н., Козлов К. В. и др. Моделирование процесса сканирования изображений с использованием матричных фотоприёмников // Тр. XXVI Междунар. науч.-техн. конф. по фотоэлектронике и приборам ночного видения. М.: ГНЦ РФ АО «Орион», 2016. С. 200–205.
- 7. Рао С. Р. Линейные статистические методы и их применения. М.: Наука, 1968. 548 с.

Поступила в редакцию 13 марта 2017 г.