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1. Введение

Дробное исчисление — это раздел математики, который занимается дифференциро-
ванием и интегрированием любого произвольного порядка. Дробные дифференциаль-
ные уравнения широко используются при анализе сложных систем, таких как механика
материалов, аномальная диффузия, распространение волн и анализ турбулентности. В
последние годы исследования в этой области привлекают большое внимание [1–7].

Дробное исчисление переменного порядка является расширением дробного исчисле-
ния постоянного порядка, т. е. дробный порядок выражается не как постоянная, а в функ-
циональной форме временной или пространственной переменной. В работе [8] Самко и
Росс расширили дробные производные Маршо и Римана–Лиувилля на случай перемен-
ного порядка, поскольку многие авторы распространили дробный порядок на временные
и/или пространственные переменные в таких определениях, как дробные производные
Капуто, Грюнвальда и Рисса [9–13]. Кроме того, были также определены дробные про-
изводные переменного порядка, необходимые для моделирования физических задач [14].
Дробные производные переменного порядка имеют значительные преимущества перед
дробными производными постоянного порядка при анализе и управлении различными
физическими системами, включая осциллятор нелинейной вязкоупругости [15–21]. Дроб-
ное волновое уравнение управляет распространением механических диффузионных волн
в вязкоупругих средах, демонстрирующих ползучесть по степенному закону, и, таким об-
разом, дает физическую интерпретацию этого уравнения в динамической вязкоупругой
системе [22].

Вследствие нелокальности и слабой сингулярности дробных производных трудно най-
ти аналитические решения для дробных дифференциальных уравнений, особенно в слу-
чае дробных дифференциальных уравнений переменного порядка, и поэтому много ис-
следований было посвящено разработке эффективных и надежных численных решений
[23–27]. Свейлам и Ассири [28] предложили явную конечно-разностную схему для реше-
ния пространственно-временного нелинейного волнового уравнения Капуто переменного
порядка и доказали, что схема безусловно устойчива, а локальная ошибка усечения равна
O(τ+h). Шен с соавторами предложили явные и неявные конечно-разностные схемы для
дробного пространственно-временного уравнения переноса–диффузии Рисса–Капуто и
доказали, что явная схема условно устойчива, а неявная схема безусловно устойчива [29].
Бхрави с соавторами обсуждали численное решение пространственно-временного дроб-
ного волнового уравнения Капуто переменного порядка с переменными коэффициента-
ми с использованием смещенного метода коллокаций Якоби–Гаусса–Лобатто и смещен-
ного метода коллокации Якоби–Гаусса–Радо для дискретизации дробной производной
по пространству и дробной производной по времени [30]. Неявная конечно-разностная
схема для многочленного дробного пространственно-временного уравнения адвекции–
диффузии переменного порядка и ее устойчивость и сходимость обсуждались в [31].

Поскольку численные схемы высокой точности для дробных производных перемен-
ного порядка позволяют повысить точность расчетов и снизить затраты на вычисления,
разработка таких численных схем имеет большое практическое значение и проводится
большая работа в этом направлении. Чжао с соавторами предложили новую прибли-
женную формулу второго порядка для дробных производных по времени переменного
порядка с использованием кубического интерполяционного многочлена Эрмита [32]. В
связи с этим мы пытаемся получить устойчивую численную схему высокого порядка
для решения следующего пространственно-временного дробного волнового уравнения
Рисса–Капуто переменного порядка:
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C
0 D

α(t)
t u(x, t) =

∂β(x)u(x, t)

∂|x|β(x)
+ f(x, t), (x, t) ∈ Ω = [0, X]× [0, T ], (1)

где 1 < αmin ≤ α(t) ≤ αmax < 2, 1 < βmin ≤ β(x) ≤ βmax < 2, начальные и граничные
условия имеют вид

u(x, 0) = ϕ(x), 0 < x < X, (2)

ut(x, 0) = ψ(x), 0 < x < X, (3)

u(0, t) = u(X, t) = 0, 0 < t ≤ T. (4)

В (1) дробная производная по времени C
0 D

α(t)
t u(x, t) — это дробная производная Ка-

путо переменного порядка α(t) ∈ (1, 2), определяемая как [32]

C
0 D

α(t)
t u(x, t) =

1

Γ(2− α(t))

∫ t

0

1

(t− η)α(t)−1
∂2u(x, η)

∂η2
dη,

а дробная производная по пространству — это дробная производная Рисса переменного
порядка β(x) ∈ (1, 2), определяемая как [33]

∂β(x)u(x, t)

∂|x|β(x)
= Kβ(x)

[
0D

β(x)
x u(x, t) + xD

β(x)
X u(x, t)

]
,

где Kβ(x) = − 1

2cos(β(x)π/2)
и

0D
β(x)
x u(x, t) =

[
1

Γ(2− β(x))

∂2

∂ξ2

∫ ξ

0

u(η, t)

(ξ − η)β(x)−1
dη

]
ξ=x

,

xD
β(x)
X u(x, t) =

[
(−1)2

Γ(2− β(x))

∂2

∂ξ2

∫ X

ξ

u(η, t)

(η − ξ)β(x)−1
dη

]
ξ=x

.

Статья построена следующим образом: в пункте 2 мы представляем явную конечно-
разностную схему для решения данного пространственно-временного дробного волнового
уравнения переменного порядка. В п. 3 мы показываем устойчивость и сходимость пред-
ложенной схемы. Эффективность предложенной конечно-разностной схемы демонстри-
руется в п. 4. В последнем пункте мы приводим некоторые заключительные замечания.

2. Явная конечно-разностная схема
для пространственно-временного дробного волнового

уравнения Рисса–Капуто переменного порядка

В данном пункте мы получим явную конечно-разностную схему для задачи (1)–(4).
Возьмем дискретные узловые точки соответственно для натуральных целых чисел

M и N :

xi = ih, h =
X

M
, i = 0, 1, . . . ,M ; tn = nτ, τ =

T

N
, n = 0, 1, . . . , N,

и введем

αn = α(tn), βi = β(xi), fni = f(xi, tn), ψi = ψ(xi), ϕi = ϕ(xi).
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Предположим, что u(x, t) ∈ C3,2
x,t (Ω), где

C3,2
x,t (Ω) =

{
u(x, t)

∣∣∣∣ ∂3u(x, t)

∂x3
,
∂2u(x, t)

∂t2
∈ C(Ω)

}
.

Взяв дискретную схему с использованием кубического интерполяционного многочле-
на в эрмитовой форме [32], мы дискретизируем дробную производную Капуто перемен-
ного порядка следующим образом:

C
0 D

αn
t u(xi, tn) =

τ−αn

Γ(3− αn)

[
a(αn)n

(
8u(xi, t1)− u(xi, t2)− 7u(xi, t0)− 6τu′(xi, t0)

)
+

n−1∑
k=1

a
(αn)
n−k

(
u(xi, tk−1)− 2u(xi, tk) + u(xi, tk+1)

)
+

n−1∑
k=0

b
(αn)
n−k

(
u(xi, tk)− 2u(xi, tk+1) + u(xi, tk+2)

)]
+O(τ2) , (5)

где
a
(αn)
k = k2−αn − 1

3− αn

[
k3−αn − (k − 1)3−αn

]
,

b
(αn)
k =

1

3− αn

[
k3−αn − (k − 1)3−αn

]
− (k − 1)2−αn .

Аппроксимируя дробную производную Рисса переменного порядка с помощью ком-
пактной схемы второго порядка для дробной производной Римана–Лиувилля, получим

∂βiu(xi, tn)

∂|x|βi
= δβix u(xi, tn) +O(h2), (6)

здесь

δβix u(xi, tn) = Kβi

[
δβix+u(xi, tn) + δβix−u(xi, tn)

]
,

δβix+u(xi, tn) =
1

hβi

i∑
k=0

ω
(βi)
k u(xi−k+1, tn),

δβix−u(xi, tn) =
1

hβi

M−i∑
k=0

ω
(βi)
k u(xi+k−1, tn),

Kβi = − 1

2cos(βiπ/2)
,

и коэффициенты ω
(βi)
k :

ω
(βi)
0 = λ1g

(βi)
0 ,

ω
(βi)
1 = λ1g

(βi)
1 + λ0g

(βi)
0 ,

ω
(βi)
k = λ1g

(βi)
k + λ0g

(βi)
k−1 + λ−1g

(βi)
k−2 (k ≥ 2),

где

g
(βi)
k = (−1)k

(
βi
k

)
(k ≥ 0),

λ1 =
β2i + 3βi + 2

12
, λ0 =

4− β2i
6

, λ−1 =
β2i − 3βi + 2

12
.
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Мы можем легко найти следующие рекурсивные соотношения для g(βi)k :g
(βi)
0 = 1,

g
(βi)
k =

(
1− βi + 1

k

)
g
(βi)
k−1 (k ≥ 1).

Для доказательства устойчивости и сходимости конечно-разностной схемы будут ис-
пользоваться следующие леммы:

Лемма 1 [34]. Пусть 1 ≤ βi ≤ 2. Тогда g(βi)k имеет следующие свойства :

1) g
(βi)
0 = 1, g

(βi)
1 = −βi < 0,

2) 1 ≥ g(βi)2 ≥ g(βi)3 ≥ · · · ≥ 0,

3)
+∞∑
k=0

g
(βi)
k = 0,

m∑
k=0

g
(βi)
k ≤ 0 (m ≥ 1).

Лемма 2 [34]. Коэффициенты ω
(βi)
k удовлетворяют следующим свойствам для

1 ≤ βi ≤ 2 :

1) ω
(βi)
0 ≥ 0, ω

(βi)
1 ≤ 0,

2) ω
(βi)
k ≥ 0 (k ≥ 3),

3) ω
(βi)
0 + ω

(βi)
2 ≥ 0,

4)
+∞∑
k=0

ω
(βi)
k = 0,

m∑
k=0

ω
(βi)
k ≤ 0 (m ≥ 1).

Лемма 3. Коэффициенты a
(αn)
k и b

(αn)
k в (5) удовлетворяют следующим свойствам

для 1 < αn < 2 :

1) a
(αn)
k > 0, b

(αn)
k > 0 (k ≥ 1),

2) a
(αn)
1 > a

(αn)
2 > a

(αn)
3 > · · · , b

(αn)
1 > b

(αn)
2 > b

(αn)
3 > · · · ,

3) a
(αn)
k+1 − 2a

(αn)
k + a

(αn)
k−1 > 0, b

(αn)
k+1 − 2b

(αn)
k + b

(αn)
k−1 > 0 (k ≥ 2),

4) 2a
(αn)
k+1 > a

(αn)
k , 2b

(αn)
k+1 > b

(αn)
k (k ≥ 2).

Доказательство. 1) Для 1<αn< 2 функция x2−αn монотонно возрастающая, поэтому

(k − 1)2−αn <

∫ k

k−1
x2−αndx < k2−αn .

Таким образом, доказательство очевидно.

2) Обозначим

f(x) = x2−αn − 1

3− αn

[
x3−αn − (x− 1)3−αn

]
.

Тогда f(x) > 0, f ′(x) < 0 в [1,+∞) и f(k) = a
(αn)
k . Поэтому a(αn)1 > a

(αn)
2 > a

(αn)
3 > · · · .

Это же верно для b(αn)k .
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3) Для определенной выше функции f(x) мы имеем f ′′(x) > 0 и, таким образом, мы
можем заключить, что f ′(x) — возрастающая функция, принимающая отрицательные
значения. Поэтому

∫ k
k−1 f

′(x) dx <
∫ k+1
k f ′(x) dx и соответственно f(k + 1) − 2f(k) +

f(k − 1) > 0. Это же можно доказать аналогичным образом для случая b(αn)k .

4) Обозначим

f(x) = 2

[
(x+ 1)2−αn − 1

3− αn

(
(x+ 1)3−αn − x3−αn

)]
−[

x2−αn − 1

3− αn

(
x3−αn − (x− 1)3−αn

)]
.

Тогда f(x) > 0 в [2,+∞) и f(k) = 2a
(αn)
k+1 − a

(αn)
k , таким образом 2a

(αn)
k+1 > a

(αn)
k (k ≥ 2).

Это же верно для b(αn)k .

В дискретной точке (xi, tn) задачу (1) можно записать в виде

τ−αn

Γ(3− αn)

[
a(αn)n

(
8u(xi, t1)− u(xi, t2)− 7u(xi, t0)− 6τψi

)
+

n−1∑
k=1

a
(αn)
n−k

(
u(xi, tk−1)− 2u(xi, tk) + u(xi, tk+1)

)
+

n−1∑
k=0

b
(αn)
n−k

(
u(xi, tk)− 2u(xi, tk+1) + u(xi, tk+2)

)]

=
1

Kβih
βi

[ i∑
k=0

ω
(βi)
k u(xi−k+1, tn) +

M−i∑
k=0

ω
(βi)
k u(xi+k−1, tn)

]
+ fni +Ri,n, (7)

i = 1, 2, . . . ,M − 1, n = 1, 2, . . . , N − 1,

где |Ri,n| ≤ C ′(τ2 + h2).
Пусть uni — приближенное значение u(xi, tn). Тогда приведенную выше схему можно

выразить следующим образом:

τ−αn

Γ(3− αn)

[
a(αn)n

(
8u1i − u2i − 7u0i − 6τψi

)
+
n−1∑
k=1

a
(αn)
n−k

(
uk−1i − 2uki + uk+1

i

)
+

n−1∑
k=0

b
(αn)
n−k

(
uki − 2uk+1

i + uk+2
i

)]

=
1

Kβih
βi

( i∑
k=0

ω
(βi)
k uni−k+1 +

M−i∑
k=0

ω
(βi)
k uni+k−1

)
+ fni . (8)

Приведенное выше уравнение можно упростить:(
b
(α1)
1 − a(α1)

1

)
u2i = −a(α1)

1

(
8u1i − 7u0i − 6τψi

)
− b(α1)

1

(
u0i − 2u1i

)
+

τα1Γ(3− α1)

Kβih
βi

( i∑
k=0

ω
(βi)
k u1i−k+1 +

M−i∑
k=0

ω
(βi)
k u1i+k−1

)
+ τα1Γ(3− α1)f

1
i , (9)

i = 1, 2, . . . ,M − 1,
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b
(αn)
1 un+1

i = −a(αn)n

(
8u1i − u2i − 7u0i − 6τψi

)
−
n−1∑
j=1

a
(αn)
n−j

(
uj−1i − 2uji + uj+1

i

)
−

n−2∑
j=0

b
(αn)
n−j

(
uji − 2uj+1

i + uj+2
i

)
− b(αn)1 un−1i + 2b

(αn)
1 uni +

ταnΓ(3− αn)

Kβih
βi

( i∑
k=0

ω
(βi)
k uni−k+1 +

M−i∑
k=0

ω
(βi)
k uni+k−1

)
+ ταnΓ(3− αn)fni , (10)

i = 1, 2, . . . ,M − 1, n = 2, 3, . . . , N − 1.

С другой стороны, используя начальные и граничные условия и разложение в ряд Тей-
лора, можем получить

u(xi, t1) = u(xi, t0) +
∂u(xi, t0)

∂t
τ +

1

2

∂2u(xi, ξ)

∂t2
τ2 = ϕ(xi) + ψ(xi)τ +O(τ2),

u1i = ϕi + ψiτ, i = 1, 2, . . . ,M − 1, (11)

u0i = ϕi, i = 0, 1, . . . ,M, un0 = unM = 0, n = 1, 2, . . . , N − 1. (12)

Теперь, в соответствие с (9)–(12), матричные представления будут следующими:(
b
(α1)
1 − a(α1)

1

)
U2 = −a(α1)

n

(
8U1 − 7U0 − 6τΨ

)
− b(α1)

1

(
U0 − 2U1

)
+

τα1Γ(3− α1)CβDβU
1 + τα1Γ(3− α1)F

1, (13)

b
(αn)
1 Un+1 = −a(αn)n

(
8U1 − U2 − 7U0 − 6τΨ

)
−

n−1∑
j=1

a
(αn)
n−j

(
U j−1 − 2U j + U j+1

)
−
n−2∑
j=0

b
(αn)
n−j

(
U j − 2U j+1 + U j+2

)
−

b
(αn)
1 Un−1 + 2b

(αn)
1 Un + ταnΓ(3− αn)CβDβU

n + ταnΓ(3− αn)Fn, (14)

n = 2, 3, . . . , N − 1,

U1 = Φ + τΨ, U0 = Φ. (15)

где

Un =
(
un1 , u

n
2 , . . . , u

n
M−1

)>
, Fn =

(
fn1 , f

n
2 , . . . , f

n
M−1

)>
,

Dβ =


2ω

(β1)
1 ω

(β1)
0 + ω

(β1)
2 ω

(β1)
3 · · · ω

(β1)
M−1

ω
(β2)
0 + ω

(β2)
2 2ω

(β2)
1 ω

(β2)
0 + ω

(β2)
2 · · · ω

(β2)
M−2

...
...

...
...

...
ω
(βM−1)
M−1 ω

(βM−1)
M−2 ω

(βM−1)
M−3 · · · 2ω

(βM−1)
1

 ,

Φ =
(
ϕ1, ϕ2, . . . , ϕM−1

)T
, Ψ =

(
ψ1, ψ2, . . . , ψM−1

)T
,

Cβ = diag

(
1

Kβ1h
β1
,

1

Kβ2h
β2
, · · · , 1

KβM−1
hβM−1

)
.
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3. Анализ устойчивости и сходимости

В данном пункте обсудим устойчивость и сходимость предлагаемой явной конечно-
разностной схемы.

Теорема 1. Если

ταmin ≤
Kβmin

Γ(3− αmin)
hβmax (16)

верно для 1 < αmin ≤ α(t) ≤ αmax < 2 и 1 < βmin ≤ β(x) ≤ βmax < 2, то явная
конечно-разностная схема (9)–(12) для пространственно-временного дробного волнового
уравнения переменного порядка Рисса–Капуто (1)–(4) является устойчивой.

Доказательство. Теперь пусть численные решения, полученные из двух различных
начальных значений W 0 = (w0

1, w
0
2, . . . , w

0
M−1)

> и V 0 = (v01, v
0
2, . . . , v

0
M−1)

> будут
Wn = (wn1 , w

n
2 , . . . , w

n
M−1)

> и V n = (vn1 , v
n
2 , . . . , v

n
M−1)

>, и положим

εn = Wn − V n.

Тогда из (15) мы получим ‖ε1‖∞ ≤ C‖ε0‖∞, где C — постоянная. Из (9) имеем(
b
(α1)
1 − a(α1)

1

)
ε2i = −a(α1)

1

(
8ε1i − 7ε0i

)
+ 6
(
ε1i − ε0i

)
− b(α1)

1

(
ε0i − 2ε1i

)
+

τα1Γ(3− α1)

Kβih
βi

( i∑
k=0

ω
(βi)
k ε1i−k+1 +

M−i∑
k=0

ω
(βi)
k ε1i+k−1

)
.

С учетом леммы 2 Dβ будет матрицей с диагональным преобладанием и 1 < βi < 2.
Тогда из леммы 1 получим

ω
(βi)
1 = λ1g

(βi)
1 + λ0g

(βi)
0 = −λ1βi + λ0 = −β

2
i + 3βi + 2

12
βi +

4− β2i
6

= −(βi − 1)(βi + 2)(βi + 4)

12
> −2.

Теперь положим ‖ε2‖∞ = max1≤i≤M−1 |ε2i | = |ε2i0 |, тогда(
b
(α1)
1 − a(α1)

1

)
‖ε2‖∞ =

∣∣∣∣− 8a
(α1)
1 ε1i0 + 7a

(α1)
1 ε0i0 + 6ε1i0 − 6ε0i0 − b

(α1)
1 ε0i0 + 2b

(α1)
1 ε1i0 +

τα1Γ(3− α1)

Kβi0
hβi0

( i0∑
k=0

ω
(βi0 )

k ε1i0−k+1 +

M−i0∑
k=0

ω
(βi0 )

k ε1i0+k−1

)∣∣∣∣
≤
(

6 + 2b
(α1)
1 − 8a

(α1)
1

)
‖ε1‖∞ +

(
6 + b

(α1)
1 − 7a

(α1)
1

)
‖ε0‖∞ −

τα1Γ(3− α1)

Kβi0
hβi0

ω
(βi0 )
1 ‖ε1‖∞

≤
((

6 + 2b
(α1)
1 − 8a

(α1)
1

)
+

2τα1Γ(3− α1)

Kβi0
hβi0

)
‖ε1‖∞ +(

6 + b
(α1)
1 − 7a

(α1)
1

)
‖ε0‖∞

≤ 10

3− αmax
‖ε1‖∞ +

5 + αmax

3− αmax
‖ε0‖∞ ≤ C1‖ε0‖∞ ,
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где C1 =
10

3− αmax
C +

5 + αmax

3− αmax
.

Пусть ‖εk‖∞ ≤ C1‖ε0‖∞ (k = 1, 2, . . . , n). Тогда из численной схемы (10) имеем

b
(αn)
1 εn+1

i = −a(αn)n

(
8ε1i − ε2i − 7ε0i + 6ε0i − 6ε1i

)
=

n−1∑
j=1

a
(αn)
n−j

(
εj−1i − 2εji + εj+1

i

)
−
n−2∑
j=0

b
(αn)
n−j

(
εji − 2εj+1

i + εj+2
i

)
−

b
(αn)
1 εn−1i + 2b

(αn)
1 εni +

ταnΓ(3− αn)

Kβih
βi

( i∑
k=0

ω
(βi)
k εni−k+1 +

M−i∑
k=0

ω
(βi)
k εni+k−1

)
.

Если ‖εn+1‖∞ = max1≤i≤M−1 |εn+1
i | = |εn+1

i0
|, из приведенного выше уравнения можем

вывести∣∣∣b(αn)1 εn+1
i0

∣∣∣ =

∣∣∣∣− a(αn)n

(
2ε1i0 − ε

2
i0 − ε

0
i0

)
−
n−1∑
j=1

a
(αn)
n−j

(
εj−1i0

− 2εji0 + εj+1
i0

)
−

n−2∑
j=0

b
(αn)
n−j

(
εji0 − 2εj+1

i0
+ εj+2

i0

)
− b(αn)1 εn−1i0

+ 2b
(αn)
1 εni0 +

ταnΓ(3− αn)

Kβi0
hβi0

( i0∑
k=0

ω
(βi0 )

k εni0−k+1 +

M−i0∑
k=0

ω
(βi0 )

k εni0+k−1

)∣∣∣∣
=

∣∣∣∣− 2a(αn)n ε1i0 + a(αn)n ε2i0 + a(αn)n ε0i0 − a
(αn)
n−1 ε

0
i0 −

(
a
(αn)
n−2 − 2a

(αn)
n−1

)
ε1i0 −

n−2∑
j=2

(
a
(αn)
n−j+1 − 2a

(αn)
n−j + a

(αn)
n−j−1

)
εji0 −

(
a
(αn)
2 − 2a

(αn)
1

)
εn−1i0

− a(αn)1 εni0 −

b(αn)n ε0i0 −
(
b
(αn)
n−1 − 2b(αn)n

)
ε1i0 −

n−1∑
j=2

(
b
(αn)
n−j+2 − 2b

(αn)
n−j+1 + b

(αn)
n−j

)
εji0 −

(
b
(αn)
2 − 2b

(αn)
1

)
εni0 +

ταnΓ(3− αn)

Kβi0
hβi0

( i0∑
k=0

ω
(βi0 )

k εni0−k+1 +

M−i0∑
k=0

ω
(βi0 )

k εni0+k−1

)∣∣∣∣.
Используя результат леммы 3, получим∣∣∣b(αn)1 εn+1

i0

∣∣∣ ≤ ∣∣∣∣− 2a(αn)n ε1i0 − a
(αn)
n−1 ε

0
i0 −

n−2∑
j=2

(
a
(αn)
n−j+1 − 2a

(αn)
n−j + a

(αn)
n−j−1

)
εji0 − a

(αn)
1 εni0 −

b(αn)n ε0i0 −
n−1∑
j=2

(
b
(αn)
n−j+2 − 2b

(αn)
n−j+1 + b

(αn)
n−j

)
εji0

∣∣∣∣+

∣∣∣∣a(αn)n ε2i0 + a(αn)n ε0i0 +(
2a

(αn)
n−1 − a

(αn)
n−2

)
ε1i0 +

(
2a

(αn)
1 − a(αn)2

)
εn−1i0

+
(

2b(αn)n − b(αn)n−1

)
ε1i0 +(

2b
(αn)
1 − b(αn)2

)
εni0

∣∣∣∣+

∣∣∣∣ταnΓ(3− αn)

Kβi0
hβi0

( i0∑
k=0

ω
(βi0 )

k εni0−k+1 +

M−i0∑
k=0

ω
(βi0 )

k εni0+k−1

)∣∣∣∣
≤
[
2a(αn)n + a

(αn)
n−1 +

n−2∑
j=2

(
a
(αn)
n−j+1 − 2a

(αn)
n−j + a

(αn)
n−j−1

)
+ a

(αn)
1 + b(αn)n +
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n−1∑
j=2

(
b
(αn)
n−j+2 − 2b

(αn)
n−j+1 + b

(αn)
n−j

)]
C1‖ε0‖∞ +[

a(αn)n + a(αn)n +
(

2a
(αn)
n−1 − a

(αn)
n−2

)
+
(

2a
(αn)
1 − a(αn)2

)
+
(

2b(αn)n − b(αn)n−1

)
+(

2b
(αn)
1 − b(αn)2

)]
C1‖ε0‖∞ +∣∣∣∣ταnΓ(3− αn)

Kβi0
hβi0

( i0∑
k=0

ω
(βi0 )

k εni0−k+1 +

M−i0∑
k=0

ω
(βi0 )

k εni0+k−1

)∣∣∣∣
≤ 2

[
2a(αn)n +

(
2a

(αn)
n−1 − a

(αn)
n−2

)
+
(

2a
(αn)
1 − a(αn)2

)
+
(

2b(αn)n − b(αn)n−1

)
+(

2b
(αn)
1 − b(αn)2

)]
C1‖ε0‖∞ −

2ταnΓ(3− αn)

Kβi0
hβi0

ω
(βi0 )
1 C1‖εn‖∞

≤ 2

[
2a(αn)n +

(
2a

(αn)
n−1 − a

(αn)
n−2

)
+
(

2a
(αn)
1 − a(αn)2

)
+
(

2b(αn)n − b(αn)n−1

)
+(

2b
(αn)
1 − b(αn)2

)
− ταnΓ(3− αn)

Kβi0
hβi0

ω
(βi0 )
1

]
C1‖ε0‖∞.

Тогда

∥∥εn+1
∥∥
∞ ≤

2

b
(αn)
1

[
2a(αn)n +

(
2a

(αn)
n−1 − a

(αn)
n−2

)
+
(

2a
(αn)
1 − a(αn)2

)
+
(

2b(αn)n − b(αn)n−1

)
+

(
2b

(αn)
1 − b(αn)2

)
− ταnΓ(3− αn)

Kβi0
hβi0

ω
(βi0 )
1

]
C1‖ε0‖∞

<
2

b
(αn)
1

[
4
(
a
(αn)
1 + b

(αn)
1

)
− ταnΓ(3− αn)

Kβi0
hβi0

ω
(βi0 )
1

]
C1‖ε0‖∞

=
2

b
(αn)
1

(
4− ταnΓ(3− αn)

Kβi0
hβi0

ω
(βi0 )
1

)
C1‖ε0‖∞

<
4

b
(αn)
1

(
2 +

ταnΓ(3− αn)

Kβi0
hβi0

)
C1‖ε0‖∞ ≤

12

b
(αn)
1

C1‖ε0‖∞ ≤ C2‖ε0‖∞,

где C2 = 12(3− αmin)C1.

Теорема 2. Пусть u(x, t) ∈ C3,2
x,t (Ω) — решение пространственно-временного дроб-

ного волнового уравнения Рисса–Капуто переменного порядка (1)–(4), uni — численное
решение, вычисленное с использованием конечно-разностной схемы (9)–(12). Если вы-
полняется то же условие (16), что и в теореме 1, то существует положительная
постоянная C > 0, такая что

∣∣u(xi, tn)− uni
∣∣ ≤ C(τ2 + h2

)
, i = 1, 2, . . . ,M − 1; n = 1, 2, . . . , N.
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Доказательство. Пусть eni = u(xi, tn)− uni и En = (en1 , e
n
2 , . . . , e

n
M−1)

>. Из (7) и (10)
получим

b
(αn)
1 en+1

i = −a(αn)n

(
8e1i − e2i − 7e0i

)
−
n−1∑
j=1

a
(αn)
n−j

(
ej−1i − 2eji + ej+1

i

)
−

n−2∑
j=0

b
(αn)
n−j

(
eji − 2ej+1

i + ej+2
i

)
− b(αn)1 en−1i + 2b

(αn)
1 eni +

ταnΓ(3− αn)

Kβih
βi

( i∑
k=0

ω
(βi)
k eni−k+1 +

M−i∑
k=0

ω
(βi)
k eni+k−1

)
+ ταnΓ(3− αn)Ri,n.

Пусть ‖en+1‖∞ = max1≤i≤M−1 |en+1
i | = |en+1

i0
|. Тогда, используя теорему 1 и лемму 3,

получим

∥∥en+1
∥∥
∞ ≤

2

b
(αn)
1

[
8a(αn)n +

(
2a

(αn)
n−1 − a

(αn)
n−2

)
+
(

2a
(αn)
1 − a(αn)2

)
+
(

2b(αn)n − b(αn)n−1

)
+

(
2b

(αn)
1 − b(αn)2

)
− ταnΓ(3− αn)

Kβi0
hβi0

ω
(βi0 )
1

]
C1

∥∥e0∥∥∞ +
ταnΓ(3− αn)

b
(αn)
1

C ′
(
τ2 + h2

)
=
ταnΓ(3− αn)

b
(αn)
1

C ′
(
τ2 + h2

)
≤ ταnΓ(3− αn)

b
(αn)
n

C ′
(
τ2 + h2

)
.

Поскольку

lim
n→∞

(b
(αn)
n )−1

nαn
=

n−αn

n3−αn−(n−1)3−αn
3−αn − (n− 1)2−αn

= 0,

имеем ∥∥en+1
∥∥
∞ ≤

ταnΓ(3− αn)

b
(αn)
n

C ′
(
τ2 + h2

)
< (nτ)αnΓ(3− αn)C ′

(
τ2 + h2

)
.

Поскольку nτ ≤ T конечно, то существует положительная постоянная C > 0, такая что∥∥en+1
∥∥
∞ < C

(
τ2 + h2

)
.

Это завершает доказательство.

4. Численные эксперименты

В этом пункте покажем эффективность описанной выше конечно-разностной схемы с
помощью численного эксперимента со следующим пространственно-временным дробным
волновым уравнением Рисса–Капуто переменного порядка

C
0 Dtu(x, t) =

∂β(x)u(x, t)

∂|x|β(x)
+ f(x, t), (x, t) ∈ Ω = (0, 1)× [0, 1]

с начальными и граничными условиями:
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u(x, 0) = x2(1− x), 0 < x < 1,

ut(x, 0) = 0, 0 < x < 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1.

Возьмем порядки производной α(t) = 1.5 + 0.5e−t
2−1 и β(x) = 1.5 + 0.25cos(πx).

Источник задается следующим образом:

f(x, t) =
2x2(1− x)t2−α(t)

Γ(3− α(t))
+

t2 + 1

cosβ(x)π2

[
x2−β(x) + (1− x)2−β(x)

Γ(3− β(x))
− 3

x3−β(x) + (1− x)3−β(x)

Γ(4− β(x))

]
.

Точное решение этой задачи u(x, t) = x2(1− x)(t2 + 1). Значения τ и h должны удовле-
творять условию ταmin ≤ 1.4745hβmax для соблюдения условия устойчивости (16).

Чтобы продемонстрировать точность численного решения uni , вычислим максималь-
ную абсолютную ошибку

E∞(h, τ) = max
0≤n≤N

‖en‖∞ .

Порядки временной и пространственной сходимости вычисляются соответственно следу-
ющим образом:

ordert∞ = log2

(
E∞(h, 2τ)

E∞(h, τ)

)
, orders∞ = log2

(
E∞(2h, τ)

E∞(h, τ)

)
.

В таблице 1 показаны численные ошибки и порядки временной сходимости для раз-
личных размеров временного шага τ с фиксированным размером пространственного ша-
га h = 1/10. В табл. 2 при фиксированном размере временного шага τ = 1/50 представ-
лены численные ошибки и порядки сходимости в пространственном направлении для
различных размеров пространственного шага h. На рисунке представлены кривые точ-
ного и численного решений предлагаемого подхода для t = 1 при h = 0.05 и τ = 0.02.

Таблица 1. Максимальные абсолютные ошибки и порядки временной сходимости при
h = 1/10

τ E∞(h, τ) ordert∞
1/20 1.6996 e−2 −
1/40 4.2723 e−3 2.9921
1/80 1.0647 e−3 2.0051
1/160 2.6540 e−4 2.0037

Таблица 2. Максимальные абсолютные ошибки и порядки пространственной сходимости
при τ = 1/50

h E∞(h, τ) orders∞
1/4 9.5272 e−2 −
1/8 2.3912 e−2 1.9943
1/16 5.9701 e−3 2.0019
1/32 1.4872 e−3 2.0052
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Рис. Поведение точного и численного решений для t = 1 при h = 0.05 и τ = 0.02

5. Выводы

В данной статье мы представили явный конечно-разностный метод для простран-
ственно-временного дробного волнового уравнения Рисса–Капуто переменного порядка.
Мы доказали, что явная конечно-разностная схема устойчива при определенных огра-
ничениях, а также оценили общую ошибку усечения. Численный пример показывает
эффективность предложенной конечно-разностной схемы. В будущем с использованием
этой идеи будет проведена работа по построению устойчивой численной схемы много-
мерного дробного волнового уравнения переменного порядка.
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