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Abstract

The relationships for irreversible flows of matter, vacancies, surfaces, and heat are derived with the
allowance for various cross effects on the basis of the model of a medium with additional parameters that
determine structural features and availability of vacancies and internal surfaces. The generalized linearized
relationships for the rates of chemical reactions, for the sources of vacancies and surfaces, as well as a
generalization of the law of internal friction have been obtained. Analysis of various types of diffusive
flows has been conducted for the diffusion that proceeds through the replacement mechanism. It was revealed,
in particular, that the coefficient of volumetric diffusion in a polycrystalline material is other than the
coefficient of self-diffusion for a single crystal that should be taken into account when interpreting
experimental data for diffusion in fine structured materials.

INTRODUCTION

The diffusion processes in solids are affected
by many factors, including temperature,
internal stresses, which can stem in its turn
from the processes of mass transfer, the
structural features, and external fields of the
highly variable nature. Among the diversity of
structural defects, the vacancies and internal
surfaces (interfaces of grains and phases) play
a special part in the processes of diffusive
transfer thus defining on frequent occasions the
mechanisms of many diffusion-controlled
macroscopic (observed) phenomena. The large
number of works is devoted to the description
of diffusion processes in the solid media with
the use of methods of thermodynamics of
irreversible processes. Nevertheless there are
many unresolved problems in this field. The
works [1—3] suggest a generalization of
thermodynamics of irreversible processes to the
deformable media with diffusion and structural
inhomogeneities of various types. Diffusion
through the intrusion mechanism and various
types of energy equations in the form of

thermal conductivity equation have been
considered in detail. It has been demonstrated
that the description of change in properties of
materials with modification in their structure
(accumulation of internal surfaces) may well
be performed by methods of thermodynamic
relaxation theory, which is inherently analogous
to the thermodynamic theory of
friction. A similar way of looking at the
interaction between rheology and the transfer
processes is developed in [4].

The present work concentrates most
attention on the constructing of the equations
for irreversible mass flows provided that
diffusion proceeds through the vacancy
mechanism. In multiphase metal systems, self-
diffusion and interdiffusion occur with the
vacancies involved. Moreover, according to the
concepts of theoretical physics and
thermodynamics, the crystal that is absolutely
free of vacancies is an unstable system. When
constructing the models of the multicomponent
diffusion, which proceeds with the vacancies
involved, the authors of numerous publications
on this theme accept, as a rule, the condition

internal
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of the conserved sites of a crystal lattice or of
the constant volume. Taking into account the
influence of pressure and deformations on
diffusion is realized under the condition of a
vanishing deformation or in the hydrodynamic
approximation. Despite the large number of the
problems solved for the practical use and the
attempts to explain many experimentally
observed effects, the applicability of the
familiar approaches [5—9] is limited. Mechanics
of continuous media may treat the vacancies
as the point defects and may involve such an
additional parameter like the density of
distribution of point defects that is rather
convenient for the description of the problems
of internal friction [10]. Generally, it is quite
correct to treat the vacancies as the weight
defect, as is the case when describing the
diffusion creep [11].

GENERAL RELATIONSHIPS

The balance of weights and the balance of
mass flows for a multicomponent body or for
an ideal crystal with no damages are of the
following form:

Zpkzpor chzl and ZJk:O (1)

where J;, = p(v,, — V) = P,Wy, v, is an individual
speed of the component k, v is the barycentric
speed defined by the relationship

pv =Z P. Vi @

We will consider the imperfect crystal with
vacancies as a multicomponent deformable
continuous body, where one of the enclosed
components controls the distribution of
vacancies. Let us introduce into consideration
the density of matter p, in a given point of
the body that it would be in the absence of
vacancies, and the density p in this point for
the real solid body. Then the positive magnitude

P, =P~ P>0 (3)
will define the density of vacancies, i.e. as
contrasted to the known physical models where
the negative density or the negative volume of
vacancies is often spoken about, the vacancies
here will be treated as the defect of weight. In

much the same way, we will derive for the
multicomponent solid

pv:Zpk_p>0 §I8)8 71 ZC,C=1+CU @

that is different from (1).
The speed vector of centre of mass, unlike
the relationship (2), will be defined by formulae

pv=pv,~pv,>0and vp=;vkpc—vvg

or

n

v=C,v,—C,v,>0and v :kaka—vva (5)

The general balance equations for the
components remain unchanged and those for
vacancies are similar to them.

The balance of mass flows for a crystal with
vacancies also differs from (1) and takes the
form

ZJM-%=0 (6)

The equations of mass balance for the
components are identical. For example, in terms
of mass concentrations, they take the form

dC,
P

dt
where 0, is the sum of sources and outlets of
a component k under physicochemical
transformations.

The analogous equation holds true for
vacancies:

dc
pgf=—ﬂﬁﬁﬁv (8)

When we deal with a polycrystalline material
or the material with nanoinclusions (with the
great quantity of internal interfaces),the state
of the medium depends on one additional
thermodynamic parameter that is specific area
n of internal surfaces. The surfaces do not
contain weight, but they possess energy. Therefore,
they are not involved in the mass balance either
for an «ideal» crystal or for a crystal with
vacancies, but they comply with the equation of
balance of the conventional type:

dn _ _
pdt

=-MJ+0, (7

MJ+o, 9)
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and they are included in the energy balance or
in the Gibbs equation together with the
vacancies and component concentrations:

du=Tds+0;p 'dg, + ’Z g,dC, — g,dC, — g,dn(10)

where u = u(s,e;,Cy,C,,h) is the local internal
energy, T is the temperature, ij is an “elastic”
part of the stress tensor components (that
depends linearly on the components of the
deformation tensor, on temperature, and on the
other parameters), s is the local entropy.
Generally, the additional parameter N may be
a vector, all components of which match the various
types of internal surfaces. In particular, the most
part of the area of internal interfaces may result
from mechanical activation. The specific superficial
energy can be of the same nature.

Generally, to describe the behaviour of such
medium and physicochemical transformations
that proceed in it, we add continuity equations,
movement equations, and energy equations to
the equations written above:

d

—d‘t) +pv= 0 (11)
dv

p—dt =-[Mo (12)
du

p—dt = A +o v (13)

where A =-MJ+ ZIFkDJk, J, is a flow of

heat, Fis the component of an external force
vector that acts upon the component with the
number k. The equations (12), (13) include the
full stress tensor @, which is represented as a
sum of spherical tensor and the deviator:

1
G=—-pd+S, P =2 O (14

each being composed, in its turn, of “elastic”

(e) and “viscous” (i) contributions:

pzpi'i'peI/IS:Si'i‘Se

Then

ocdlv =—(p'+ p®)Mv + (8" + S Ov  (15)
To close the system of equations we need to

write down the equations of state and the

determination relationships. They can be

constructed in various manners or can be

determined experimentally. The general form of

the equations of state in thermodynamics of
irreversible processes follows immediately from
(10), which will be shown in the subsequent
discussion. The second relationships in
thermodynamics follow from the condition of
the non-negative produced entropy. Expression
for the entropy production is derived on
substitution of the derivatives with respect to
time u, Cy, n, and C, in (10). In the absence of
external weight forces, with allowance made
for (14), (15), we will obtain

1

Ocn = ? [gvov + 905 — ;gkok - piDV]

n

1y BT 9 9, 9s
+ I ;JkD(T)l— I CH A Gl

+ L 5t e léL)'eEﬂIDv s %5 o (e
T T dt

Provided that the stress tensor is symmetric,
the last summand in parentheses is equal to
zero. Then, we deal only with a symmetric stress
tensor. This expression distinguishes separately
the scalar, vector, and tensor processes. In order
that inequality (16) is complied with, it would
suffice to assume that the relation between the
generalized flows and thermodynamic forces
that cause them is linear. According to the
Curie’s principle, only magnitudes of the same
tensor dimensionality can be linked by such
linear relationships. Taking into consideration

0, = kaimk(bia ngck == ZAi b,

where A, =—Z g, v, M, is the affinity of i-th

chemical reaction, ¢, is its rate, r is the number

of chemical reactions running in the system,

vy; is the stoichiometrical coefficient of the

component k in the reaction 7, my, is its molar

weight, we will write down for scalar processes

0, = Zli].Ach,]-+l.A-|-lA + 1, A
&

wt v istts ip‘ip

0, = Z lviACh,i + lvav+ lvsAS + l“pAp (17)

o, = ;lSiAChyi T LAt LA + lspAp
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pi= Zl Lileni T LA+ LA+ 1A

where A, ; = AT, A, = 9,/T, A, = g,/T,
A,=-[v/T are the scalar generalized
thermodynamic forces (the temperature can be
missed in the definition of thermodynamic force
that is apparent from the equation (16)); li]- =
Li by = Ly Lp = Ly Lnj = 1 e Ly are the
associated phenomenological coefficients that
make up a symmetric positive definite matrix.
Hence, the rates of the solid phase chemical
reactions and the sources and outlets for
vacancies and internal surfaces depend on
a diversity of scalar thermodynamic forces. The
viscous component of hydrostatic pressure also
includes summands of a
physicochemical nature. The last among the
relationships (17) represents the generalized law
of Newton’s internal friction and the second
takes into account that the sources and the
outlets of vacancies can be related to chemical
reactions, internal surfaces, and to a current
of matter. If the number of additional
parameters includes that one, which defines the
behaviour of dislocations, additional summands
will arise in these relationships.

For a special case of single chemical reaction
and equilibrium vacancies, chemical affinity is
represented by A = —(g,v;m; + g,v,m,). Then
the first and the last expressions among (17)
will assume the form ¢ = kA — Kk, [Dv,
p'= k,A — KLl v, where the allowance is made
for the symmetry of matrix of coefficients.
Taking into consideration the fact that chemical
potentials depend on the components of
deformation tensor, we will find that the
mobility of a medium can exert influence on
the reaction rate through various channels.

For vector processes it is true

i) v ()

variable

J. = ZijXj + L, X, + L, X +L.X,
£

J

v

ZkaXk + vaXv + Lvsxs + LUTXT
(18)

J, = ZLstk + stxv + LssXs + LSTXT
=1

JT = Z LTka + LTva + LTsXs + LTTXT

where X, = —U(g,/T), X, = ~U(g,/T), X; = -0OT/T
are the generalized vector thermodynamic
forces. As well as in the foregoing, the matrix
of Ly; = Ly, Ly, = Ly, .. coefficients is positive
definite.

The remaining summand represents the
generalized Navier—Stokes law for viscous
forces:

Ebua +6vBD
Lg 0% %

a

j— —
Si _Cklaﬁeufsfeaﬁ =

N |

ISOTHERMAL MULTICOMPONENT DIFFUSION IN CRYSTALS
THROUGH THE REPLACEMENT MECHANISM AT CONSTANT
STRESSES

Provided that doj; =0,dT =0,dn=0 the
Gibbs equation for the Gibbs energy
g=u—Ts—p '¢,0 takes the form

i i

dg = ;gkdck - g,dC, (19)

On the strength of additivity for
thermodynamic parameters, we will derive

g = ;gkck - gvcv
=1

where the first summand is the local specific
Gibbs energy that it would be under the
condition of no vacancies. Then the relationship

;degk_cvdgvzo will be equivalent to
=1

Gibbs—Duhem relationship for the considered case.
By definition of diffusive flows (18), the
following relationships hold true

3, = —; L,Oghe LogS

from whence, taking into consideration (6), we
will find

Lvl = Z Lkl va = Z Lkv
=1 ’ =1

In addition, L, = L, Ly; = L;. Consequently,
the following relationship holds true for the flow
of component k

(20)
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—guD

L D

Taking the definition for chemical potentials
of components in an ordinary manner:

g, = 9" +RTm;' In(C.y,), and for chemical
potentials of vacancies as

=RTm_, In(C,y,) (22)

v. =(c)" =v.(C. a5 T )
we can use the standard mathematical procedures
in what follows. The definition (22) is different
from a conventional one used when chemical
potentials of vacancies are calculated for a unit
volume. Theoretically, it is possible to define the
vacancies with individual properties for each
kind of diffusing particles. With the use of
smoothed generalized description of vacancies
as the weight defect, we introduce the average
molar mass m,, of particles that relates also to
vacancies.

For this elementary case, the set of
equations of state can be presented as follows:

i g¥ac, - g¥ac

dg,

dg, Z pMdc, +B,dC,

(23)
RT ¥ _ RT
where Bl(k) :mgkl’ BE;) = m,C, (gvk +1),
RT Olny,
B, = oo =1+ ;
meC, " 9 7 T amce, -

The final relationship for the flow of
component k assumes the form

3. = —DZ D,,[00C; (24)
where
ln Z m]C]p Ji
(25)
- C.
fi=gst— F](gvi +1)

cp v
are the generalized thermodynamic multipliers
that include the molar weight of diffusing

particles; g;; are conventional thermodynamic
multipliers:

C Oln Vi
"Comc, e
multipliers that relate to the interaction of
5, + Cdlny,
C0InC, -
Equation (6) holds true for the flow of vacancies.
Provided that m;, =m_,, i.e. in the case that
diffusing particles have resembling sizes and

weights, these equations give rise to all specific
models known from the literature. The

95 = Oy are thermodynamic

vacancies and components: ¢, =

difference is but a definition of concentration
for vacancies and, as a consequence, the signs
in the definition of the generalized
thermodynamic multipliers.

Relations (23)—(25) represent but a
generalization of the known models in the
theory of multicomponent diffusion.

DIFFUSION BY THE VACANCY MECHANISM
IN THE MEDIUM WITH THE LARGE NUMBER
OF INTERNAL INTERFACES

Let dT = 0, do;; = 0 still hold true. However,
the mass transfer occurs in the medium, which
can be characterized by two additional
parameters, specifically, the concentration of
vacancies C, and specific area of internal
interfaces . Then, having introduced the Gibbs
energy into consideration, that is

g=u-Ts-p'c we will write down

1] ’
dg = Z 9,dC, —g.dn—g,dC,

Dag D
[ﬁC

The equations of balance for two additional
parameters are of identical form. However,
they exert the different influence on the mass
transfer, as it will be apparent in what follows.
Taking into consideration the relationships of
symmetry and balance of flows (6) within the
system of equations for the flows

ik

EIGI:I

,and 9s = Eﬁn mstead of (10).
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G
1

5o 1f8 0
JD——ELDZD % ng

we will find: Ly, Lik, L,

:L]'L;:Z‘ij, :vaszs,

L, =ZL1¢U. This significantly reduces the
=1

Lsk’

number of independent phenomenological
coefficients and allows representation of the
equation (26) as

—_ _ - ij _ Lks
J, = ]ZiT O(g~ 9. 0,
L
- sk |:| ss
J, > T (9= 9. ) -0 @7

<

J =;J,€
=1

This way of notation implies that the
components and N have been selected as
independent variables in the system from n
components and vacancies. Therefore, the
(9, — 9,) and g, magnitudes in (27) will depend
on the concentration of components and the
area of internal surfaces, i.e.

Ug= S 52 %] C % etc.

Eﬁck 0 oon 0

Theoretically, we could choose n —1
concentrations, vacancies, and the additional
parameter as independent variables. The result
will be same.

Using the designations introduced above, the
system of equations of state on the basis of
the Gibbs equation can be written as follows:

dg, = Z gHdc, - yan-@dc
= i ydc, +adn+ydc, (28)
=1

=5 e, +) +Rac.

where
Oog. O O 00 O é*g0
v =g =g J4g=g5_"97
Eﬁck DT,G,C,,Zik,r] 0 ackar]] O anaCD
[og, O
= 0L 0
aon Do,

is a change in specific superficial energy under
changes of the concentration of k-th
component;

og, O 09°g 0
Q=020 =050
00N G, on’ Groc,

is a change in energy of internal surfaces under
changes of their area. These parameters
introduced in [1] make quite clear physical sense.
One more parameter, namely,

g -20.0_0 090 0 doD .0
" @C,0 poc,on anacg 0on O

defines the variation in the energy of internal
surfaces under changes of concentration of
vacancies.

Consequently, the equations for the flows
of components and surfaces will take the
following form

3 = _p; D,0C~p DA (29)
3 = _i D,0C~ DJA
D = ] ks l
M ]Zp C
O
D, = Tp SZ i (\/l V(v ) +L, % (30)

- L,R
D, = Z‘ - sz L \/l
= m,C

= L (W ) e

Formulae derived for the diffusion coefficients
differ from the formulae, which have been
found in [1, 2] for an instance of diffusion
through the intrusion mechanism, not only in
the fact that they involve the generalized
thermodynamic multipliers. The diffusion

D
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coefficients along the interfaces and the
coefficients for the migration of interfaces owing
to their intrinsic curvature (or owing to the
availability of a gradient of their specific area)
depend on the energy that is transferred by the
components and on the generalized energy, which
is related to the transfer of vacancies. Similar to
the case of [1—3], matrix of diffusion
coefficients generally may be asymmetrical.

DIFFUSION AND STRESSES

With the proviso that a temperature is
constant for a considered
thermodynamic system, the Gibbs equation for
the Gibbs energy is of the form

complex

g.dn-g,dC,

dg € do; +ngdC (31)

Consequently, the components of deformation
tensor, chemical potentials of components and
vacancies, and specific superficial energy depend
on variables 01], Cy, N, and C,,

Representing €&, g5, 9, g, as the total
differentials, we will write down the system
of equations of state that is analogous to (28):

= Z Bdc, -yPdn-gdac, -p' d’dd
=1
= Z ¥dc, + Gdn+ydc, +p' dldd (39

= ; p¥ac, +ydn+gdc, +p' dd g,

n

dsi].:kz allac, + adn+alldc, + s,,,dos,
=1

ijal

where s, are the ordinary coefficients of

elastic compliance that make up the fourth rank

tensor; O(g.f) are the coefficients of concentration

expansion or, if the case in point is crystals,
the coefficients of dilatation of crystal lattice
in the following form:

cx(lc) _ D@Si]- E_ _pD azg D_ _ O 629 0
K C. 0O %Ckacﬁjﬁ Fﬁao;.ack
Dagk

" oo

coefficients 0(5;) reflect the change in the

components of the tensor of deformations upon
the variation of the area of internal surfaces,
or they reflect the change in the specific
superficial energy upon the variation of
components of elastic stress tensor [1-3]:

(s) [0€,; U o%g U
= Don 8™ "o

a 0 Ogg U
ﬁ Fﬁao
The newly derived 0(5;’) coefficients can be

defined also in terms of thermodynamics:

o = 0de,; O
a;; EPFD

U o¢%¢g U

p@cvac;ﬁ
_ 0 @3¢ O Ogg0
) _p%U?jacu ﬁ ) ﬁgﬁ

The equations for the flows of components,
surfaces, and vacancies are of the previous
form (26), because according to
thermodynamics, the vector processes can stem
only from the forces of vector nature. However,
taking into consideration the equations of state,
we will derive that the final equations for the
flows will include the summands of three types:
those proportional to the concentration
gradients, to a gradient of specific area of
internal surfaces, and to the gradients of a
component of elastic stress tensor:

J. = _pz D,0C-p D,Jg + Bﬁ@
=1
(33)

—i D,0C- Dja+ B
=1

where the coefficients of mass transfer under
the effect of stresses and the coefficients of
migration of surfaces under the effect of
stresses, as is the case in [3], constitute not some
new coefficients, but those calculated from the
coefficients introduced previously. Unlike the
analogous coefficients for the case of diffusion
through the intrusion mechanism, the transfer
coefficients that have been found here depend
on the dilatation coefficients of the crystal lattice,
which are related to the availability of vacancies:
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BH = 3 ﬂ(q(f) . cx(”))+ Lies 46)

To&TpY T (34)
BY) = ﬂ((J((’.“) + a(?))+ﬁa(?)

! Z TP\ U T

If a medium is isotropic, which may be
assumed the right characteristic for a
polycrystalline body, we will derive

a® =305, a) =305,

(k) =
aij - Sakéij’ ij s ij v
where q;, 0, O, are the linear coefficients of
structural and concentration “expansion”.

Hence, instead of (34), we obtain

"~ 3L 3L, O
B = &kl +o )+ g A5
! o Tp (@ +a.) Tp GSH !

9 _ O 3L 3L, O
B = ék(qk +a”)+Tpa856if

When describing the diffusion by the
vacancy mechanism, it is supposed, as a rule,
that the cross diffusive flows can be ignored as
compared to the diagonal ones on an assumption

(35)

that L; = L; <<L,, . This approximation is
substantiated in thermodynamics [5, 6] and it
allows a simplification of some coefficients in
the considered case too:

_ LuR L 2oy L 9
Dkl pmkck fkl Tp %&‘ _Dk fkl Tp \8
(L L
D = - T (1) 4 ) 4L gﬁ (36)
ks Tp (Vﬁ +¢s ) +Tp

B (’2: Eh(qk + o(v)+ 3Ly asméi. =B, 9,

Tp Tp 'H" '
The other transfer coefficients remain
unchanged. A correlation with vacancies (or the
cross flows associated with the availability of
the gradient in the concentration of vacancies
that exceeds the equilibrium concentration) is
taken into account through the generalized
thermodynamic multipliers f;.

SELF-DIFFUSION

Let a thermodynamic system is composed
of atoms of one kind and of vacancies, which
can move both in the bulk and along the internal
interfaces. In this case, we need just one

equation for a mass flow (or for a flow of
vacancies) and an equation for a flow of
surfaces

J, =-pDy, |:|C1_ Y D@\ + Ei’ ;ack
Js = _Dsl |:lcjl_ Dsm + Q- IEck (37)

where

L L
D, = R _ s %;1)
pm,C,  Tp

D, = _Tip g‘u (\/sl) +\£v)) +L,

L.R L
b, = L B p
m¢,

D, ==y (W + ) 41, ¢

3
B1 = Fp gﬂl (al + av) + Llsas@

(38)

B, = Tip ., (a, +a,)+ L,a,{
Among the six transfer coefficients do not all
represent the independent ones.

So, if there exist an isolated crystal free of
internal interfaces and if the vacancies are at
equilibrium, then J, = -pD![C,, where D) is
a self-diffusion coefficient under equilibrium
conditions with respect to vacancies. Thus, we
derive

_ Dicimyp

Lll R

(39)
If the vacancies are the non-equilibrium ones,
then J, =-pD)f,0C,. Supposing that the
diffusion coefficient D,; along the boundaries
of polycrystal grains represents the known
value and the coefficient of migration of
boundaries under the effect of concentration
gradient D,; (these magnitudes can be
determined experimentally on the basis of the
appropriate concepts) is the known value too,
we will define the phenomenological coefficients
Lls = le:

0
=T PG (4 o) +Dls§ (40)

s Qg RT

Using (39) and (40), we will determine the
volumetric diffusion coefficient
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1)
D, =f, + ¥ b, R LY O )+1§(41)

Q 0D,,RT

Consequently, the volumetric diffusion
coefficient in the polycrystalline system is
different from the volumetric diffusion
coefficient in an isolated crystal and depends
on the ratio between two energy parameters:
the change in specific superficial energy owing
to a diffusion of component and the change in
superficial energy owing to the changing surface
curvature. This effect will be less pronounced
for polycrystals with a larger grain size and
actual investigations disregard the effect. This
is correct when yﬁl) / Q <<1. However, this effect
must be tangible and should be taken into
account during the interpretation of
experimental data for the materials with the
large number of internal surfaces.

Now we can consecutively determine the
remaining Using L,
phenomenological coefficient, which follows
from (40) and from the expression for Dy

T GBfpQ )
“la P

we will first find the D coefficient and then
the coefficients of transfer under the effect of
stresses:

Q v
Dss :WDSI +Dls Q%I) +¢5))

S

eD! (0 i) S B (¢ 4P e

coefficients.

0 D0

sl

. \Z”)) ,RTD,0 g

1~1

P +7RT f”fg
Q m(C \fs 8

= Dlﬂclml
S(GI v) RT
3a ED1°C1m1 () v)
YW+ g 43
Q D, .RT ( ) 0 (43)
_ v a fll RT D
=-3
%)“ ﬁi y(l Q m,C,
D 0 y %U)
pv(1 Q
+a.)C
o Ho ;T) e (44)
0 > <«

Thus, only three from six transfer coefficients
are independent, specifically, D, D,,, D, .The
others can be calculated or determined
experimentally on the basis of concepts on the
structure of crystal and of interfaces.

The formulae given in this section imply that
if a body (a medium) is made up of the
particles small in size so that we can assume
4 = 0 (this corresponds to a uniform
distribution of the area of internal interfaces),
we are no longer able to speak about the
diffusion coefficients in the bulk and along the
grain boundaries. In this case, we should deal
with some effective diffusion coefficients and
effective transfer coefficients under the effect
of pressure. Formulae (41) and (43) can be
presented as

1
DllzDeff:Dlofll+6yS D
Q
D.C'm 3a
B, =B, =3(0, +a,)—t-—21-8"—"2D
1 eff (l v) RT Q 1s
st—aggSDls

Fig. 1. Likely qualitative change in the effective transfer
coefficients, which follows from the analysis of formulae
(41) (a) and (43) (b). r* is a minimum possible size of
“particles” the system consists of.
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0
where 8 = Déf}g(\él) + \&”)) +1 By definition

Q=20, and Q-~7" - As D'/D,, <<1, it is
worth expecting that d is a positive magnitude
of the order of 1. Consequently, if

ygl) >0,D,, >0 (r is an average size of the

“particles” that make up the system), then the
effective diffusion coefficient sharply increases

with reduced r. Depending on the ygl) and o

magnitudes, the effective diffusion coefficient
may be theoretically both lower than is the
coefficient of superficial diffusion and higher
than this coefficient. The character of change
in the effective transfer coefficient under the
effect of pressure may be different depending
on the sign of a; coefficient. This depends
supposedly on the structure of interfaces. When

RT o, &>1

cmQa, +a, D,

the coefficient B; reverses sign. The likely
qualitative behaviour of effective transfer
coefficients depending on the size of particles,
which make up the system, is illustrated in
Fig.1,a,b.

CONCLUSIONS

Thus, the study shows the potentials of
thermodynamics of irreversible processes as
regards the simulation of chemical transforma-
tions and diffusion in solid, structurally non-
uniform media. The relationships for mass flows
in the media that include the large number of
internal surfaces are analysed; the relationships
are derived that link the various transfer coef-
ficients for diffusion through the replacement
mechanism with allowance made for stresses,

which accompany diffusion. The relationships
for mass flows contain parameters, which make
clear physical sense and are available from the
experiment, for example, starting from the
theory of internal friction. Generally, the model
of the medium offered in [1—3] and developed
in the present work may be useful to describe
the mechanical behaviour of structurally non-
uniform media, including nanostructured ma-
terials and creep processes. Within the limits
of thermodynamics of irreversible processes,
it is possible to perform estimates of change in
macroscopic properties of a medium under
changes of the additional parameters that char-
acterize the structure [3]. These issues need for
a special discussion.
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