10. Воронич И. И., Александров В. М., Бабенко В. А. Некlassические смешанные задачи теории упругости.— М.: Наука, 1974.
12. Манжиров А. В. Осесимметричные контактные задачи для неоднородно стержней вязкоупругих слоистых оснований // ПММ. — 1983.— Т. 47, вып. 4.

УДК 539.374

ОБЩЕННАЯ ТЕОРИЯ ПЕРСОТЕРМИЧЕСКОЙ ДЕФОРМАЦИИ

Э. И. Блинков, К. И. Рустико
(Львов)

Решается задача аналитического описания связей между деформациями, напряжениями и температурой в точках твердого тела при его термомеханическом нагруже-
нии. Напряжения разделяются на равновесные и неравновесные. Равновесные на-
прижения не зависят от временных эффектов деформирования, и через них методами классической теории пластичности определяется необратимая деформация. Учитывает-
ся возмущения механических свойств при повышенных температурах. Кривые нестационарной пластической деформации описываются неустановившимся и установившимся состояниям и температурным последействием.

1. Основные положения. Рассматривается состояние вещества постоянной плотности достаточно малой окрестности точки деформируемого твердого тела как элемента сплошной среды, характеризующего состояние в его точке. Вследствие специфики деформации твердого тела такой феноменологической элемент среды образует закрытую термодинамическую систему, в которой действуют законы классической термодинамики [1].

Эксперименты показывают [2, 3], что если в некоторый момент тер-
номеханического нагружения реального твердого тела зафиксировать деформацию и температуру, то после этого происходит уменьшение наприложений, так что полное (термодинамическое) равновесие в системе на-
ступает только после такой релаксации.

Напряжения, которые оставляют после перехода системы из факти-
ческого в термодинамически равновесное состояние, назовем равновес-
ными, а релаксирующую часть напряжений, компоненты тензора которых получаются путем вычитания компонент (т. с. тензора равновесных на-
прижений из соответствующих компонент тензора напряжений, имею-
ящих место в момент фиксирования деформации и температуры, назовем неравновесными напряжениями и обоюдным (т. с. равновесными напряжениями и подобным (т. с. неравновесными напряжениями). Таким образом, в каж-
дый момент деформирования имеет место тождество

$$\psi_{ij} = \sigma_{ij} - \langle \sigma_{ij} \rangle, \quad i, j = 1, 2, 3.$$

По определению неравновесные напряжения непосредственно выра-
зуют термодинамическую неравновесность, т. е. кинетику деформиров-
ния реального твердого тела во времени, отражаю пульсацию начало тера-
модинамики для рассматриваемого случая.

В термомеханике тип среды в смысле «реологического закона» ис-
следуемого материала [1] полностью зависит от специфики ее диссипации. При известной диссипативной функции соотношения, определяющие связи между напряжениями и деформациями в точке среды, т. е. тип среды, могут быть легко найдены.

Полная плотность производства энтропии в точке среды, т. е. диссипативная функция феноменологического элемента в рамках неравновес-
ной термомеханики, найдена с помощью первого и второго начал термодинамики в [4] в виде

\[\Theta = \left(\langle \sigma_{ij} \rangle \varepsilon_{ij}^H + \psi_{ij} \mu_{ij} - q_i T_i \right) / T, \]

причем, согласно второму закону термодинамики, \(\Theta \geq 0 \). Здесь и ниже \(\varepsilon_{ij}^H = \varepsilon_{ij} - \varepsilon_{ij}^N; \varepsilon_{ij}, \varepsilon_{ij}^N, \mu_{ij} \) — компоненты тензоров полной, необратимой и обратимой относительных деформаций соответственно; \(\mu_{ij} \) — компоненты тензорной величины, характеризующей неравновесность процесса деформации «координатно», \(q_i \) — компоненты вектора скорости потока тепла; по повторяющимся индексам происходит суммирование; точка над символом означает дифференцирование по времени \(t \), а запятая на уровне индексов — по следующему за ней индексу.

2. Определение уравнений. В дальнейшем ограничившись процессами, протекающими в воле однородных температур, где третий член \(\langle 1.2 \rangle \) равен нулю, и проанализируем оставшиеся члены, учитывая, что при рассмотриваемых малых деформациях их влиянием на друга можно пренебречь.

Первый член \(\langle 1.2 \rangle \) \(\langle \sigma_{ij} \rangle \varepsilon_{ij}^N \geq 0 \) показывает, что и при учете кинетики процесса необратимая деформация полностью определяется только равновесными напряжениями. Но процесс необратимой деформации, составленные из последовательности равновесных состояний, не зависят от времени и являются предметом классической теории пластичности [5]. В частности, при гладкой поверхности нагружения ассоциированный закон течения записывается как

\[d\varepsilon_{ij}^H = F \frac{\partial f}{\partial \varepsilon_{ij}^H} d \langle s_{mn} \rangle, \quad \frac{\partial f}{\partial \langle s_{mn} \rangle} d \langle s_{mn} \rangle \geq 0. \]

Для простоты изложения ограничивается первоначально изотропным материалом с трансляционным упрочнением, при котором уравнение поверхности нагружения имеет вид [6]

\[f(\langle \sigma_{ij} \rangle) = \frac{3}{2} (\langle s_{ij} \rangle - c \varepsilon_{ij}^N) (\langle s_{ij} \rangle - c \varepsilon_{ij}^N) - \langle \sigma_{ij} \rangle^2 = 0, \]

где \(\langle \sigma_{ij} \rangle \) — предел текучести при равновесном нагружении; \(\langle \sigma_{ij} \rangle \) — компоненты девиатора тензора равновесных напряжений; \(f = f(\langle \sigma_{ij} \rangle) \) — поверхность нагружения; \(F \) — постоянная материала.

Согласно второму члену \(\langle 1.2 \rangle \) \(\psi_{ij} \mu_{ij} \geq 0 \), полагая, что \(\psi_{ij} = \psi_{ij}(\mu_{ij}, \mu_{12}, \mu_{13}, \ldots, \mu_{53}) \) и что эти функции линейные, записем

\[\Psi_{ij} = r_{ijmn} \mu_{mn}. \]

Как и всякий «координатный» параметр состояния, \(\mu_{ij} \) выражается через независимые «словые» координаты \(\langle \sigma_{ij} \rangle, \Psi_{ij}, T \), так что если за бесконечно малый промежуток времени \(dt \) равновесные напряжения получили приращение \(d \langle \sigma_{mn} \rangle \), неравновесные \(d \Psi_{mn}, \) а температура \(dt \), то

\[d\mu_{ij} = a_{ijmn} d \langle \sigma_{mn} \rangle + b_{ijmn} d \Psi_{mn} + r_{ij} dt. \]

Из (2.3) и (2.4) получаем \(\dot{\Phi} + A_{ijmn} \dot{\mu}_{mn} = g_{ij} \dot{T} \Delta_{ijmn} + \mu_{ijm} \dot{g}_{ij} \dot{T} \Delta_{ijmn} + q_{ijmn} \mu_{ijmn} \)

Для первоначально изотропного материала эти соотношения имеют вид

\[\dot{\Psi}_{ij} + g_{ij} \dot{\Psi}_{ij} = a \langle \sigma_{ij} \rangle. \]

Здесь коэффициенты \(g \) и \(a \) зависят только от температуры. Уравнения (1.1), (2.1) и (2.5) определяют необратимую деформацию в точке твердого первоначально изотропного тела.

В качестве примера опишем аналитически простое одноосное растяжение и неуставновившуюся ползучесть при постоянной комнатной температуре хранения.

При одноосном нагружении из (2.2)

\[
\langle \sigma \rangle = \langle \sigma^e \rangle + \frac{3}{2} c e^t, \tag{3.1}
\]

а из (2.5)

\[
\dot{\psi} + g \dot{\psi} = a \langle \dot{\sigma} \rangle, \tag{3.2}
\]

\(g\) и \(a\) — постоянные материала.

Подставив (1.1) и (3.1) в (3.2) и решив полученное уравнение при начальных условиях \((t = 0, \sigma(0) = \sigma_0, \langle \sigma^e \rangle(0) = \langle \sigma_0^e \rangle, e^0(0) = 0)\), находим выражение

\[
\varepsilon^e(t) = \frac{2}{3c(1 + a)} \left[\sigma(t) + \frac{a g}{1 + a} \int_0^t \sigma(\tau) \exp \left(-\frac{g}{1 + a} (t - \tau) \right) \, d\tau + \right.
\]

\[
\left. + \left((1 + a) \langle \sigma_0^e \rangle - \sigma_0 \right) \exp \left(-\frac{g}{1 + a} t \right) - (1 + a) \langle \sigma_0^e \rangle \right],
\]

определяющее необратимую деформацию в зависимости от скорости растяжения.

Установим связь между \(\sigma_0^e\) и \(\langle \sigma_0^e \rangle\). Подставив (1.1) в (3.2) и решая полученное уравнение относительно \(\langle \sigma \rangle\) при растяжении до предела текучести, \(t = 0, \sigma(0) = \langle \sigma_0 \rangle(0) = 0\), имеем

\[
\langle \sigma(t) \rangle = \frac{t}{1 + a} \left[\sigma(t) + \frac{a g}{1 + a} \int_0^t \exp \left(-\frac{g}{1 + a} (t - \tau) \right) \sigma(\tau) \, d\tau \right]. \tag{3.4}
\]

Как правило, растяжение в упругой области проводится по линейному закону \(\sigma(t) = vt\) (\(v = \text{const}\)). Подставляя это значение в (3.4) и учитывая, что на пределе текучести \(\sigma_0 = v t_0\), запишем

\[
\langle \sigma_0 \rangle = \sigma_0 - \frac{a v}{1 + a} \left[1 - \exp \left(-\frac{g}{1 + a} \frac{t_0}{v} \right) \right]. \tag{3.5}
\]

«Равновесный» предел текучести \(\langle \sigma_0 \rangle\) — постоянная материал. Практически это тот экспериментально получаемый предел текучести, значение которого не меняется при достаточно малых скоростях растяжения. Поэтому, согласно (3.5), полный предел текучести \(\sigma_0 = f(v)\), т. е. уравнение (3.3) дает возможность определить \(\sigma_0\) как функцию скорости растяжения. Однако практическая ценность уравнения (3.5) состоит в том, что оно дает возможность с помощью самых простых опытов на растяжение до \(\sigma_0\) с разными скоростями найти постоянные \(g\) и \(a\). Для этого достаточно провести два эксперимента на растяжение: один за время \(t_1\) с постоянной скоростью \(v_1\) до \(\sigma_1^e\), а второй, например, — за время \(t_2 = 2t_1\) с постоянной скоростью \(v_2\) до \(\sigma_2^e\). Подставляя эти значения в (3.5) и решив полученные уравнения, найдем

\[
\frac{a}{g} = \frac{t_1 - \langle \sigma_0 \rangle / \sigma_1}{1 - \exp (\ln y_1)} - \frac{1}{t_1} \ln y_1, \tag{3.6}
\]

151
где

\[
y = \left(\frac{2t_1 - \langle \sigma_x \rangle}{\sigma_x^2} \right) \pm \left[\left(\frac{2t_1 - \langle \sigma_x \rangle}{\sigma_x^2} \right)^2 - 4 \left(\frac{t_1 - \langle \sigma_x \rangle}{\sigma_x^2} \right) \left(\frac{t_1 - \langle \sigma_x \rangle}{\sigma_x^2} - 1 \right) \right]^{1/2} \frac{t_1 - \langle \sigma_x \rangle}{\sigma_x^2}.
\]

Положив в уравнении (3.3) напряжение постоянной величиной \(\sigma = \sigma_0 \), получим

\[
\varepsilon(t) = \frac{2}{3c(1+a)} \left[\sigma_0 - \sigma_0 \exp \left(\frac{-\sigma}{1 + \alpha} t \right) + \left(\sigma_0 - \sigma_0 (1 + a) \langle \sigma_x \rangle \right) \times \right. \]

\[
\left(1 - \exp \left(\frac{-\sigma}{1 + \alpha} t \right) \right),
\]

которая определяет неустановившуюся ползучесть после мгновенного растяжения.

4. Высокотемпературная деформация. Необратимая деформация иска-\hskip9pt жает структуру материала. Однако при достаточной температуре искаженная деформацией структура возвращается в исходное естественное состояние. Происходит температурное разупрочнение или «отдых» материала. Такое разупрочнение — специфическая особенность высоко-\hskip9pt температурной деформации, порождающей качественно новые эффекты (установившуюся ползучесть и температурное последствие [8, 9]).

Ограничившимся снова материалом с линейным транспланированным упрочне-\hskip9pt нием, при котором поверхность нагружения перемещается в поле напря-\hskip9pt жений как жесткое целое. При этом температурное разупрочнение может быть выражено движением центра поверхности нагружения в первоначальное положение, которое она занимала до направленного деформационного упрочнения. Как и всякий термоактивируемый процесс, такое разупрочнение протекает во времени, и для его уче-\hskip9pt та ассоциированный закон (2.1) заимем в виде

\[
\frac{d\varepsilon_{ij}}{dt} = \frac{\partial f}{\partial \langle \sigma_{ij} \rangle} \frac{\partial f}{\partial \langle \varepsilon_{mn} \rangle} d\Sigma_{mn};
\]

\[
d\Sigma_{mn} = d\langle s_{mn} \rangle + K(T)\alpha_{mn}d\varepsilon_{ij},
\]

а уравнение поверхности нагружения — в виде

\[
f(\langle \sigma_{ij} \rangle) = \frac{3}{2} (\langle \varepsilon_{ij} \rangle - \alpha_{ij} (\langle \varepsilon_{ij} \rangle - \varepsilon_{ij}) - \langle \sigma_{ij} \rangle) = 0;
\]

\[
dx_{ij} = c \varepsilon_{ij} - K(T) \alpha_{ij} dt.
\]

Первое слагаемое (4.4) показывает, что упрочнение материала обусловлено необратимой деформацией. В частности, при \(K(T) = 0 \) и нулевых начальных условиях \(\alpha_{ij} = c \varepsilon_{ij} \), т. е. при равновесных процессах имеет место случай теории пластичности [6]. Второе слагаемое (4.4) отражает свойство материала разупрочняться при достаточно высоких температурах, поэтому параметр \(K \) зависит от температуры так, что при отсутствии такого разупрочнения \(K(T) = 0 \).

Уравнения (1.1), (2.5), (4.1)—(4.4) представляют собой полную систему релогических уравнений неизотермической деформации с учетом тем-\hskip9pt пературного разупрочнения. Используем их для аналитического описания и объяснения условий существования таких специфических эффектов высокотемпературной деформации, как установившаяся ползучесть и температурное последствие.
5. Установившаяся полузучесть. Предположим, что установившаяся полузучесть происходит при той же постоянной температуре T_∞, как и предварительное нагружение. Причем эта температура достаточно высока для того, чтобы неравновесных напряжений вообще не существовало и происходило высокотемпературное разупрочнение, так что в любой произвольный момент времени $\psi_{ij} = 0$, и, следовательно, $\langle \sigma_{ij} \rangle = \sigma_{ij}$. При этом в (3.2) $a = 0$ и соотношения между напряжениями и необратимыми деформациями при мгновенном предварительном нагружении до $\sigma_{ij} = \sigma_{ij}^* = const$ представляются соотношениями (4.1)–(4.4) при $dt = 0$, т. е. уравнениями варианта теории течения [6].

Механизм деформаций в условиях температурного разупрочнения при постоянных напряжениях и температуре объясняется на примере поведения образца после простого одноосного растяжения, когда, согласно (4.4),

$$d\sigma = cd\varepsilon^n - K(T)\alpha dt.$$

Пусть образец из первоначального изотропного материала в условиях температурного разупрочнения растянуть при постоянной температуре до $\sigma_\infty > \sigma$, а затем напряжение поддерживается постоянным. При $\sigma_\infty = const$ происходит температурное разупрочнение, в результате которого центр поверхности нагружения O_1, занимавший в момент достижения напряжением значения σ_∞ положение A (рис. 1, где исходное положение сферы указано штрихами), возвращается к исходному положению O и за промежуток времени dt переместится на элементарное расстояние $O_1O_1 = d\alpha$, так что сама поверхность нагружения займет положение B. При этом необратимой деформации не происходит ($d\varepsilon^n = 0$) и из (5.1)

$$d\alpha = - K(T)\alpha dt.$$

По изменению положения жесткой поверхности нагружения (сферы постоянного радиуса σ_∞), вызванное элементарным смещением ее центра на величину $d\alpha$, определяемую равенством (5.2), при фиксированном растягивающем напряжении означает его приращение по отношению к новому положению этой поверхности на элементарную величину $d\sigma = = -d\alpha$ (рис. 1). Как известно из теории течения, это вызывает мгновенное элементарное приращение необратимой деформации $d\varepsilon^n$, которая упрочняет материал, возвращая тем самым поверхность нагружения в исходное состояние (из положения B в положение A).

При мгновенном элементарном приращении напряжения второе слагаемое в (4.4) отсутствует и, следовательно,

$$d\sigma = d\varepsilon^n.$$

Так как поверхность нагружения перемещается как жесткое целое и $d\sigma = -d\alpha$, то из (5.2) и (5.3)

$$d\varepsilon^n = (K_\alpha) \alpha(t)/c.$$

С другой стороны, подставляя (4.3) в (4.1) для одноосного нагружения, получаем с учетом (4.2) и (4.4) при $d\sigma = 0$

$$d\varepsilon^n = 4\alpha_1^2 K_\alpha \alpha(t).$$

Из сопоставления (5.4) и (5.5) находим постоянную материала $c = 1/(4\alpha_1^2)$. При постоянном напряженном состоянии, когда, согласно (4.3), α_1 (а значит, и α при одноосном нагружении) — фиксированная величи-
на, формула (5.4) определяет необратимую деформацию с постоянной скоростью.
Таким образом, одновременное протекание процессов механического упрочнения и механического возврата при постоянном напряженном состоянии приводит к необратимой деформации с постоянной скоростью, т. е. к установившейся (линейной) ползучести.
Нетрудно убедиться, что к аналогичному результату (т. е. к формуле (5.4)) приводит формальная подстановка в (5.1) значения \(\alpha = \text{const} \), так что приведенные выше рассуждения необходимы только для объяснения механизма установившейся ползучести. Изменение поверхности нагружения из-за возврата механических свойств, но не связанное с деформацией ползучести, отмечено в [10].
6. Температурное последствие. Явление «самопроизвольного» изменения формы изделия при многократном циклическом изменении температуры, которое может происходить и при отсутствии внешней нагрузки, называется температурным последствием. При изменении температуры поликриスタлического тела в нем из-за плотного прилегания друг к другу хаотически расположенных частиц (криスタлов, аэрон и т. п.) возникают термические микроструктурные напряжения (второго рода) [7, 11]. Равенство нулю среднего значения микроструктурных напряжений феноменологического элемента свободного от внешних сил тела при любом безградиентном изменении его температуры говорит об их равновероятностном случайном распределении. Поэтому при изменении температуры они увеличиваются одинаково во всех направлениях, достигая впервые поверхности текучести или во всех ее точках сразу (если эта поверхность — сфера с центром в нулевой точке поля напряжений), или в той ее точке, которая наименьше удалена от центра поля напряжений (см. рис. 1, точка а). При продолжающемся росте термоструктурных напряжений тело необратимо макродеформируется в направлении, определяемом положением «минимальной» точки на поверхности нагружения (на рис. 1 температурное уменьшение длины).
Если упрочняющийся материал в некотором направлении необратимо деформируется непосредственно из-за изменения температуры, то в этом направлении поверхность нагружения удаляется от нулевого центра поля напряжений, т. е. происходит температурное упрочнение. Поэтому если температуру возвратить к исходному значению, а затем вновь изменить, как и раньше, то для начала необратимой деформации в прежнем направлении она должна достигнуть максимального предшествующего значения и изменение формы тела при циклических одновеличальных изменениях температуры произойти не будет. Однако это утверждение верно только при отсутствии температурного разупрочнения. При его наличии при фиксированной измененной температуре материал разупрочняется. Это разупрочнение будет сопровождаться необратимой деформацией, механизм происхождения которой тот же самый, как и устанавлившейся ползучести, только здесь она образуется при релаксационном уменьшении термоструктурных микронапряжений, что делает ее скорость переменной (постепенно затухающей).
Преимущественное направление необратимой деформации материала из-за изменения температуры может быть создано и приложенными внешними силами. Действительно, если к телу приложена некоторая внешняя нагрузка, пусть не выводящая материал из области упругих деформаций, то при изменении температуры термоструктурные напряжения в некотором направлении будут складываться с силовыми. Если изменение температуры достаточно велико, чтобы эта суммарная величина напряжений превысила предел текучести, то в этом направлении непосредственно при изменении температуры произойдет необратимая деформация. Если же, кроме того, имеется температурное разупрочнение, то форма изделия изменится и при циклических одноамплитудных тепловыхенах аналоогично рассмотренному.
Термоструктурные напряжения, возникающие в изделии при изменении его температуры, охарактеризуем некоторой усредненной изотропной мерой, которую введем в ассоциированный закон течения. Эта мера, отражающая свойства таких напряжений, должна зависеть от всей истории изменения температуры: убывать с течением времени при постоянной температуре и давать приращение необратимой деформации как при увеличении, так и при уменьшении температуры. Таким требованиям удовлетворяет скалярная величина

\[
Q(t) = \int_0^T T(s) R(t - s) \, ds,
\]

где \(R(t - s)\) — убывающая функция с ростом аргумента \(t - s\), описывающая релаксацию термоструктурных микронапряжений. Поэтому \(R\) в (6.1) принимается в виде (6.2) \(R = B \exp (-\beta(t - s))\) (\(B\) — постоянная, а \(\beta\) — параметр материала).

Меру термоструктурных микронапряжений приравниваем к действующим напряжениям в условиях температурного разупрочнения, записав (4.2) в виде

\[
d\Sigma_{mn} = d\langle s_{mn} \rangle + K(T)\alpha_{mn} dt + dQ(t).
\]

Найдем вначале необратимую деформацию из-за мгновенного изменения температуры \(\Delta T = T_0 - T_0\) (т. е. при тепловом ударе), при котором \(dt = 0\) и, следовательно, \(d\langle s_{mn} \rangle = 0\). Так как в случае простого одноосного нагружения с растяжением, подставляя (4.3) в (4.1), имеем

\[
de^e = 4F\langle \sigma_e \rangle^2 d\Sigma,
\]

а согласно (6.3) \(d\Sigma = Bd\left[\int_0^T T(s) \exp (-\beta(t - s)) \, ds\right]\), то, интегрируя (6.4) и учитывая, что при \(t^0 = 0\) \(\Delta T = 0\), \(\epsilon_e = \epsilon^0(0) = \epsilon_0 - \) необратимая деформация в начале теплового удара, \(F = 1/(4\cos^2\beta)\), получаем

\[
\epsilon_e^0 = \epsilon^0 + B|\Delta T|/c
\]

\(c_e^0\) — необратимая деформация в конце теплового удара.

Теперь найдем необратимую деформацию в результате теплового удара. Для этого зафиксируем измененную температуру и растягивающее напряжение, т. е. положим \(T = T_0 = \) const и \(\sigma = \sigma_0 = \) const, и решим систему уравнений (5.1) и (6.3), имеем

\[

c^e = c\Delta^e + K\alpha_e + \frac{B}{c} \left[K T - \left(1 - \frac{K}{\beta}\right) \left(1 - \exp\left(-\beta t\right)\right) \right] (1 - \Delta T). \tag{6.5}
\]

Для одноосного растяжения из (4.3) находим равенство (3/2)\(\alpha = = \langle \sigma_e \rangle = \langle \sigma_e \rangle\), которое при высокотемпературной ползучести без упрочнения, т. е. при \(\langle \sigma_e \rangle = \sigma = \sigma_0 = \) const и \(\alpha = \alpha_0 = \) const, принимает вид \(\alpha_0 = (2/3)(\sigma_0 - \sigma_e)\). Подставляя это значение \(\alpha_0\) и \(\Delta^e = \epsilon^e - \epsilon^0\) из (6.3) в (6.5), получаем основную расчетную формулу

\[
\epsilon^e(t) = \frac{1}{c} \left[\frac{2c}{3} K (\sigma_0 - \sigma_e) t + B \left(1 - \frac{K}{\beta}\right) \left(1 - \frac{K}{\beta}\right) \left(1 - \exp\left(-\beta t\right)\right) \right] (1 - \Delta T), \tag{6.7}
\]

которая учитывает основные характеристики особенности деформации при колебаниях температуры в условиях высокотемпературной ползучести, отмеченных в экспериментах [8, 9, 11].

7. Ползучесть цикла при циклических тепловыхнах. На рис. 2 кривая 2 представляет собой деформацию ползучести поликристаллического цикла при \(T_1 = 325\) К и \(\sigma_0 = 60\) МПа, а \(I\) — его деформацию при
циклически меняющейся температуры [8], показанной здесь же. Из диаграмм следует, что циклические изменения температуры многократно увеличивают ползучесть цинка, делая неоспоримым важным учет этих особенностей в теории.

Расчетная формула для деформации в описанных условиях вытекает непосредственно из формулы (6.7)

\[\Delta e^n(t) = [L + Rt + M(1 - \exp(-\beta t))]|\Delta T|, \]

где \(L, R, M, \beta \) — постоянные материала, подлежащие определению из экспериментов.

Постоянную \(L \), характеризующую мгновенное приращение деформации при скачке температуры, нашли, воспользовавшись результатами испытаний цинка, приведенными в [8, 9, 12], из которых следует, что при \(\Delta T = 40 \text{ К} \) и \(\sigma_0 = 60 \text{ МПа} \) с ростом температуры \(\Delta e^n = 7,7 \cdot 10^{-5} \). Подставляя эти значения в (7.1) при \(t = 0 \), получаем \(L_n = 1,925 \cdot 10^{-6} \text{ К}^{-1} \).

При понижении температуры \(\Delta e^n = 5,55 \cdot 10^{-5} \) и \(L_n = 1,387 \cdot 10^{-6} \text{ К}^{-1} \).

Здесь \(L_n \) и \(L_n \) — значения \(L \) при повышении и понижении температуры.

Для определения постоянной \(M \), характеризующей температурное последействие, вновь воспользуемся результатами, приведенными в [8, 9, 12], согласно которым при \(\Delta T = 40 \text{ К} \) и \(\sigma_0 = 60 \text{ МПа} \) температурное последействие цинка образует деформацию \(e_1^n = 3,3 \cdot 10^{-5} \). Подставляя эти данные в (7.1) при \(L = R = 0 \) и \(t \to \infty \), имеем \(M = 8,26 \cdot 10^{-7} \text{ К}^{-1} \).

Анализ графиков деформации температурного последействия, приведенных в [8, 9, 12], показывает, что в цинке она прекращается не позже чем через 2 ч после скачка температуры. Принимая время релаксации \(t_p = 7200 \text{ с} \), получаем из (7.1) при \(L = R = 0 \) \(\beta = 5,4 \cdot 10^{-5} \text{ с}^{-1} \).

Для определения постоянной \(R \) воспользуемся кривой изотермической ползучести 2 (рис. 2), согласно которой через 10 ч при \(T = 325 \text{ К} \), когда прошли все релаксационные процессы, вызванные изменением температуры, \(e^n = 4,25 \cdot 10^{-4} \). При этом из (7.1) находим \(R = 1,86 \cdot 10^{-19} \text{К} \cdot \text{с}^{-1} \).

Подставляя найденные значения постоянных в (7.1), определим исключительно расчетную формулу деформации цинка при циклических температурах. Результаты расчетов, соответствующие опытным данным, показаны на рис. 2.

Полученная теория неизотермической деформации выражает новый подход к изучению деформирования твердого тела, подтвержденный для некоторых наиболее характерных случаев нагружения опытными данными.

Литература

2. Вавилин А. С., Викторов В. В., Механика В. Н. и др. Экспериментальное и теоретическое изучение влияния временных эффектов на пластическое деформирование сталей при комнатной температуре. — М., 1983. — (Предпринимательский НИИ АПСС, НССР; 211).
8. Лихачев В. А., Малыгин Г. А. Температурное последействие в цицике //ФММ.— 1983.— Т. 16, вып. 5.
11. Давиденков Н. В., Лихачев В. А. Необратимое формоизменение металлов при циклическом тепловом воздействии.— М.; Л.: Машиз., 1962.

Поступила 20/IV 1986 г.

НЕДИССИПАТИВНЫЕ НЕУПРУГИЕ ДЕФОРМАЦИИ ЭЛЕМЕНТА СЛОЖНОЙ СРЕДЫ

Г. В. Иванов

(Новосибирск)

Упругие деформации элемента сложной среды — часть деформаций элемента, которая после его разгрузки (снятия внешних воздействий) исчезает. Неупругие (остаточные) деформации — часть деформаций элемента, которая остается в нем после его разгрузки. Наряду с неупругими деформациями элемента, при которых механиче- ская энергия переходит в тепло, возможны недиссипативные неупругие деформации, т. е. такие, при которых механическая энергии не переходит в тепло.

Одним из простейших наглядных примеров процесса деформирования с недиссипативными неупругими деформациями может быть деформирование системы из двух упругих пружин и стержней (рис. 1 из [1]). При деформировании этой системы механиче- ская энергия в тепло не переходит, но из-за односторонних зажимов А процесс раз- грузки протекает вначале, чем процесс нагружения, т. е. процесс нагружения, сокращаясь между приложенной к стержню силой P и перемещением Δ стержня будет иметь вид, указанный на рис. 2, где Δ* — недиссипативная неупругая деформация системы.

В данной работе формулируются уравнения, определяющие недиссипативные неупругие деформации элемента сложной среды.

1. Деление деформаций на упругие и неупругие. В качестве тензора деформаций примем [2]

\[\varepsilon_{ij} = \frac{1}{2} \left(\partial u_i / \partial x_j + \partial u_j / \partial x_i \right) \]

(1.1)

(\varepsilon^2, \varepsilon^1 — базисные векторы лагранжевой и декартовой систем координат).

Состояние элемента среды, от которого исходят надынамические задачи, назовем начальным. Под начальным, что напряжения в начальном состоянии равны нулю, плотность и температура равны заданным, отличным от нуля значениям \(\rho_0 \), \(T_0 \) и на любом этапе процесса деформирования элемента среды можно его «полностью разгружен» до состояния с равными нулю напряжениями и температурой \(T_0 \) (вырезая элемент из среды, нагревая при охлаждении его до температуры начального состояния и давая ему возможность свободно деформироваться).

В газообразных средах равенство нулю напряжений возможно лишь при равной нулю плотности. В этом случае в начальном припи- мается состояние, в котором среднее напряжение и температура равны заданным, отличным от нуля значениям, а под «полной разгружкой» пони- мается переход в состояние со средним напряжением и температурой, равными их значениям в начальном состоянии.