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Abstract

Some new results concerning complex dynamics in a kinetic model of heterogeneous hydrogen oxidation
over metallic catalysts are presented. Relaxation oscillations with a high sensitive dependence on the initial
conditions arise in the three-variable system with fast, intermediate and slow variables due to existence of the
canard cycles that occur in the one-parameter family of two-variable subsystems. A key feature of the
weakly stable dynamics appearance will be successive period doubling bifurcations in which the system behavior
becomes progressively more complex until the attractor appears.

INTRODUCTION

A detailed study of a mathematical model
of a heterogeneous catalytic system in the form
of three-variable nonlinear ordinary differen-
tial equations is presented with special atten-
tion to weakly stable dynamics, a type of
complex irregular behavior frequently encoun-
tered in oscillating chemical reactions. One of
the most important properties of the weakly
stable dynamics is “a sensitive dependence on
the initial conditions” [1—4].

In the model considered we find numerically
periodic orbits of rather complex structure. Bi-
furcation theory and precise numerical analysis
of the global error in long-term numerical inte-
gration show that a high sensitive dependence
on the initial conditions and weakly stable dy-
namics appear in the three-variable systems with
fast, intermediate and slow variables due to exis-
tence of the canard cycles which occur close to
the Hopf bifurcation in the one-parameter family
of two-variable subsystems [5].

In this paper we study another way to weak-
ly stable dynamics and show the role of suc-

cessive period doubling bifurcations in the cre-
ation of weakly stable dynamics.

MATHEMATICAL MODEL

In this paper we present some new results
concerning complex dynamics in a three-di-
mensional kinetic model of heterogeneous hyd-
rogen oxidation on metallic catalysts [11]:

T=Ty(l —x —y? — kyx’ —2ks3(y) Oy
Y=ly(l —x — y)? - k_2y2 — ky(y,2) Uy
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where x and y are the catalyst surface cover-
ages by hydrogen and oxygen adsorbed, re-
spectively, so that x 20, y 2 0 and x + y < 1;
z is the concentration of oxygen dissolved into
the subsurface layer, 0 < z < 1; k., kiy, ks,
k,, and k.5 are the rate constants of the reac-
tion mechanism steps, o = k_;/k;, € = k5 and
key(y) = kzp exp (~Hzy),

ky (y,2) = kyg exp (THyY ~H52)
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due to the assumption that the activation en-
ergies of the reaction rates depend upon the
oxygen concentrations y and z. Note that €is a
small parameter because the dissolution into
the subsurface layer is a relatively slow pro-
cess as compared to the chemical reaction or
adsorption onto the catalyst surface.

An original iterative method for solving
periodical boundary-value problem for autono-
mous ordinary differential equations is applied
to calculations of periodic orbits and their sta-
bility in the three-dimensional kinetic model
of catalytic hydrogen oxidation [6—8]. This
method develops the concept of the well known
multishooting method [4, 14, 15].

The model (1) has served as an important
motivation for the simplest possible geometri-
cal interpretation of weakly stable dynamics
in nonlinear heterogeneous catalytic reactions
[9-13, 5, 8]

PERIODIC ORBITS

We let parameters k, and k,, vary while
fix the other parameters k_;, = 0.008, k, = 20,
k_, =0, kgy = 100, pg = 30, py = 12, gy, = —10,
o = 7.88, and € = 0.0024. Physically it means
that the hydrogen partial pressure in the gas
mixture over the catalyst surface is varied. Note
that k; and k,, depend linearly upon it.

Now we give an example to illustrate that
an unstable limit cycle exists (Fig. 1). Using the

Fig. 1. Unstable limit cycle of the system (1) with a trajec-
tory inside it for k; = 0.135824260 and k,, = 2. The stable
steady state is (0.3252466, 0.5958083, 0.4892114)
with the eigenvalues —1.9004268 and —1.9769 (10~*
= [5.05856 (107°

Fig. 2. Unstable limit cycle of the system (1) with two
trajectories around it. Parameters are the same as in
Fig. 1.

computational technique developed in [6—8],
we take three local cross-sections T, T, and Tt
of the trajectories (1) passing through the points
a; = (0.28899502, 0.64086281, 0.51238075), a, =
(0.33714826, 0.57187779, 0.49312216) and a; =
(0.38548260, 0.52092294, 0.44677296). It allows
us to find the periodic orbit decomposed into
three pieces with intervals of integration T,
from T to T, where T, = 395.66180572, T, =
283.61493869 and T; = 598.30280382. Thus, the
period equals 1277.57954823. We remark that
in this example the multipliers of the unstable
closed orbit are (1.8133, 0, 1) and hence a two-
dimensional stable invariant manifold exists. The
local dynamical behavior “transverse” to this
manifold is relatively simple, since it is control-
led by the exponentially contracting flow in
the local stable manifold (Fig. 2). Trajectories in
the stable manifold are expanding.

WEAKLY STABLE DYNAMICS

Numerical integration of the system (1) ap-
pears to yield trajectories that are not asymp-
totically periodic. In fact, in some cases we ob-
serve weakly stable dynamics followed by as-
ymptotically periodic motions (Fig. 3). Follow-
ing [1, 2] we refer to the local expansion and
consequent “independent” behavior of orbits
starting arbitrary close together as sensitive
dependence on the initial conditions or weakly
stable dynamics. Since such “simple” differen-
tial equations of dimension three play an im-
portant role in the kinetic modeling of hete-
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Fig. 3. Weakly stable dynamics: (x,y)-projection of the
numerical solution of the system (1) for k; = 0.144 and
k,, = 1.92 with the initial conditions chosen arbitrary close
to the attractor.

rogeneous catalytic reactions [13] and can pos-
ses solutions of stunning complexity, an un-
derstanding of typical structures of their so-
lutions is essential.

PERIOD DOUBLING SEQUENCE

We consider the role of successive period
doubling bifurcations in the creation of weak-
ly stable dynamics in Fig. 3. Following [3], we
make first one remark about relationship of
the Poincare return map with eigenvalue —1
at a fixed point, to the continuous flow around
the corresponding periodic orbit. The trajecto-
ries of the Poincare map alternate from one
side of the fixed point to the other along the
direction of the eigenvector to —1. It means
that the two-dimensional center manifold for
the periodic orbit of the three-variable sys-
tem is twisted around the periodic orbit like a
Mobius band around its center line.

We have found numerically a sequence of
flip bifurcations in the system (1). In Fig. 4—6
we show periodic orbits for several values of
k, and k4, Using the techniques of previous
paragraphs we show that for a value k; where
0.146 < Ici< 0.147045 the periodic orbit of pe-
riod T has bifurcated to an orbit of period 2T
and then for lcl where 0.145 < k; < 0,146 the
periodic orbit of period 2T has bifurcated to

Fig. 4. T-periodic solution of the system (1) for k; =
0.147045 and k,, = 1.9606. The unstable steady state is
(0.3487194, 0.5699204, 0.4706045) with the eigenvalues
-1.931873 and 7.17146 0107* + ¢ [5.14812 (1075, Period
equals 970.4344.
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Fig. 5. 2T-periodic solution of the system (1) for k; =
0.1460 and k,, = 1.94666. Period equals 1931.1277.
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Fig. 6. 4T-periodic solution of the system (1) for k; =
0.1450 and k,, = 1.9334. Period equals 3949.9572.
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an orbit of period 4T. In such a way, an infi-
nite number of families of periodic orbits can
be created in flip bifurcations as k,; decrease.
Note, that k4, should very simultaneously with
the changes of k;. Thus, a stable orbit with
period longer then any pre-assigned period can
be found if we let k; vary in the interval
0.144 < k; < 0.145. Such orbits are indistin-
guishable in the numerical integration from
bounded non-periodic motions.

We suggest that for k; = 0.144 such orbits
may constitute the attractor observed in a long-
term numerical integration (see Fig. 3).

CONCLUSION

In the paper an original iterative algorithm
proved to be efficient and accurate for long-
term calculations of rather complex periodic
orbits and their stability in a three-dimensional
kinetic model of catalytic hydrogen oxidation.

Our analysis of this model demonstrates that
for some parameters there exists an attractor
with the region of high sensitive dependence
on initial conditions. To get a clearer idea of
the structure of the attracting set we find suc-
cessive period doubling bifurcations in which
the flow becomes progressively more complex
until the attractor appears.

We believe that the results obtained are of
importance for understanding the reasons of
weakly stable dynamics in different heteroge-
neous catalytic systems.
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