Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 44.201.96.43
    [SESS_TIME] => 1657056756
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 0a8ba8827f72b2bb7c8ec90f646cbadf
    [UNIQUE_KEY] => a9f6b56c3bb22f1c1d830889adbf1d31
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Прикладная механика и техническая физика

2008 год, номер 4

Математический анализ истечения ламинарной струи горячего газа в покоящийся газ с более низкой температурой

C. Н. Антонцев, Х. И. Диас*
Университет Лиссабона, 1649-003 Лиссабон, Португалия, anton@ptmat.fc.ul.pt
*Университет Комплутенс, 28040 Мадрид, Испания, diaz.racefyn@insde.es
Ключевые слова: нелинейные вырождающиеся уравнения параболического типа, диффузия, горячие газовые струи, асимптотическое поведение решения
Страницы: 192-205

Аннотация

Исследуется приближение пограничного слоя классической математической модели, описывающей истечение ламинарной струи горячего газа в покоящийся газ с более низкой температурой. Доказано существование и единственность решений невырожденной задачи в областях, не содержащих застойных зон. Исследовано асимптотическое поведение этих решений.