Эффективный коллокационный метод вейвлетов Лежандра для решения уравнений типа Эмдена-Фаулера
Н. Саха1, Дж. Шахни1, Р. Сингх1, В. Гулерия2, Н. Шривастав3
1Birla Institute of Technology Mesra, Ranchi, India randhir.math@gmail.com 2National Institute of Advanced Manufacturing Technology Hatia, Ranchi, India 3Chandigarh University, Mohali, India
Ключевые слова: уравнение Эмдена-Фаулера, вейвлеты Лежандра, вейвлеты Хаара, единственность решения, интегральное уравнение, метод коллокации
Страницы: 305-326
Аннотация
Уравнения Эмдена-Фаулера широко используются в математическом и физическом моделировании. Они описывают явления в различных областях, включая астрофизику, квантовую механику и нелинейную динамику. Область их применения - от моделирования теплового поведения звезд до распределения компонентов химических реакций. Ученые постоянно ищут новые методы для более эффективного и точного решения уравнений Эмдена-Фаулера (ЭФ) ввиду их универсальности и разнообразия. В данной статье представлен новый подход к решению обобщенных уравнений ЭФ с учетом граничных условий с использованием вейвлетов Лежандра. Сначала мы преобразуем задачу в эквивалентные интегральные уравнения Фредгольма. Затем используем коллокационный подход вейвлетов Лежандра и итерационный метод Ньютона-Рафсона для решения получаемых в результате интегральных уравнений. Формулировка предлагаемого алгоритма дополняется анализом его сходимости и ошибок. Мы исследуем точность метода путем вычисления численного решения и ошибок с помощью различных примеров. Мы сравниваем наши численные результаты с точным решением и решениями, полученными с помощью методов, описанных в литературе, таких как метод вейвлетов Хаара и метод оптимального гомотопического анализа. С помощью коллокационного метода вейвлетов Лежандра может быть получена улучшенная точность при меньшем числе точек коллокации, что делает его использование более выгодным.
DOI: 10.15372/SJNM20250306 EDN: YRWRGF
|