Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 2880
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [PASSWORD_CHECK_WEAK] => N
                    [PASSWORD_CHECK_POLICY] => N
                    [PASSWORD_CHANGE_DAYS] => 0
                    [PASSWORD_UNIQUE_COUNT] => 0
                    [LOGIN_ATTEMPTS] => 0
                    [BLOCK_LOGIN_ATTEMPTS] => 0
                    [BLOCK_TIME] => 0
                )

        )

    [SESS_IP] => 3.144.136.254
    [SESS_TIME] => 1745045897
    [IS_EXPIRED] => 
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [SESS_SHOW_INCLUDE_TIME_EXEC] => 
    [fixed_session_id] => 19220c92581793b07349e384dd9b0f1f
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

    [SESS_OPERATIONS] => Array
        (
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2020 год, номер 2

О сведении обратной граничной задачи к последовательному решению двух некорректных задач

"В.П. Танана1,2"
"1Южно-уральский государственный университет, Челябинск, Россия
tananavp@susu.ru
2Челябинский государственный университет, Челябинск, Россия"
Ключевые слова: оценка погрешности, модуль непрерывности, преобразование Фурье, некорректная задача, error estimation, modulus of continuity, Fourier transform, ill-posed problem
Страницы: 219-232

Аннотация

Статья посвящена решению обратной граничной задачи для уравнения теплопроводности и оценке погрешности приближенного решения. К решаемой задаче неприменимо преобразование Фурье по времени, которое позволяет получить оценку погрешности. Потому в уравнении теплопроводности использовано преобразование функции, которое позволило получить оценку.

DOI: 10.15372/SJNM20200208