Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.16.135.226
    [SESS_TIME] => 1732187503
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => c22a59f8bd154c99dff9e9db3920402a
    [UNIQUE_KEY] => fd6ab850d88a869a992e0fdb3c8e58c3
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Прикладная механика и техническая физика

2017 год, номер 3

Классы симметрии тензоров анизотропии квазиупругих материалов и обобщение подхода Кельвина

Н.И. Остросаблин
Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск, 630090. Россия
abd@hydro.nsc.ru
Ключевые слова: линейно-упругие материалы, квазиупругость, упругость по Коши, анизотропия, классы симметрии, собственные модули и состояния, linearly elastic materials, quasielasticity, Cauchy elasticity, anisotropy, symmetry classes, proper modes and states
Страницы: 108-129

Аннотация

Для всех классов кристаллографических симметрий получены в явном виде матрицы (тензоры) анизотропии квазиупругих (упругих по Коши) материалов. Тензоры анизотропии четвертого ранга таких материалов не обладают главной симметрией, в этом случае матрица анизотропии не является симметричной. В результате введения в пространстве симметричных тензоров напряжений и деформаций различных базисов линейная связь напряжений и деформаций записывается в инвариантной форме, аналогичной форме, в которой записывается обобщенный закон Гука для случая анизотропных гиперупругих материалов, и содержит шесть положительных собственных модулей Кельвина. Показано, что, вводя в пространстве деформаций модифицированные деформации, полученные поворотом, можно перейти к симметричной матрице анизотропии, имеющей место в случае гиперупругости. Для случая трансверсальной изотропии приведены примеры определения собственных модулей Кельвина и собственных базисов и матрицы поворота в пространстве деформаций. Показано, что возможно существование квазиупругих сред с кососимметричной матрицей анизотропии без симметричной части. Предложены некоторые способы экспериментальной проверки модели квазиупругости.

DOI: 10.15372/PMTF20170312