Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.135.205.26
    [SESS_TIME] => 1732187299
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 3abe0a26be0ec818b1e062086300bff1
    [UNIQUE_KEY] => f2ea718118f8f0dd490fc03c97d681d3
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Прикладная механика и техническая физика

2015 год, номер 1

Влияние электрического тока на глубину проникания кумулятивных струй в преграды

Г.А. Швецов, А.Д. Матросов, С.В. Станкевич
Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, Россия
shvetsov@hydro.nsc.ru
Ключевые слова: кумулятивная струя, преграда, электрический ток, проникание, кумулятивная струя, преграда, электрический ток, проникание
Страницы: 150-161

Аннотация

Представлены результаты экспериментальных и численных исследований поведения металлических кумулятивных струй (КС) при протекании по ним электрического тока. Рассматривается возможность уменьшения и увеличения глубины проникания КС в преграды. Введены понятия критической плотности тока и идеальной формы токового импульса, при которых в струе развивается перетяжечная магнитогидродинамическая неустойчивость, сопровождающаяся объемным взрывом элементов КС при их выходе из межэлектродного промежутка. Развитие в КС перетяжечной магнитогидродинамической неустойчивости и последующий объемный взрыв материала струи приводят к уменьшению ее длины и плотности и как следствие к уменьшению глубины проникания в преграду. Показано, что этим процессом можно управлять, изменяя параметры электрического импульса. Анализируется возможность увеличения глубины проникания КС в преграды в условиях, когда протекающий по КС электрический ток меньше критического значения. Рассматривается процесс нагрева КС из различных материалов (Cu, Fe, Mo, Ta, W и др.) при протекании по ним электрического тока. Показано, что использование электрического тока для нагрева КС может оказаться перспективным для увеличения глубины проникания КС в преграды.

DOI: 10.15372/PMTF20150119