Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 18.119.128.164
    [SESS_TIME] => 1736915139
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 4f5119301dd64a2b6c8b0e8eeaccb4aa
    [UNIQUE_KEY] => 493e7b25a604f3e58a082b1520350a03
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2014 год, номер 2

Численно-аналитическое моделирование волновых полей для сред сложного строения и структуры

Б.Г. Михайленко, А.Г. Фатьянов
Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090
mikh@sscc.ru
Ключевые слова: математическое моделирование, аналитическое решение, полные волновые поля, однократные волны, упругие, пористые, неупругие, анизотропно-неупругие, случайно-неоднородные среды
Страницы: 163-176

Аннотация

В работе представлен аналитический метод моделирования сейсмических волновых полей для широкого круга геофизических сред (включая упругие, неупругие, анизотропные, анизотропно-неупругие, пористые, случайно-неоднородные и т. д.) на сверхдальние расстояния. Поскольку не используются конечно-разностные аппроксимации, не возникает сеточной дисперсии при расчетах волновых полей для произвольных моделей сред и баз наблюдений. Аналитическое представление решения в спектральной области позволяет проводить анализ полного поля по частям, в частности получать однократные волны. На основе созданной программы расчета волновых полей проведено моделирование водных волн и сейсмического «звона» на Луне. Объяснено явление монотонного смещения резонанса в область более низких частот с увеличением расстояния регистрации, обнаруженное при экспериментальных работах с вибратором.