Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 2880
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [PASSWORD_CHECK_WEAK] => N
                    [PASSWORD_CHECK_POLICY] => N
                    [PASSWORD_CHANGE_DAYS] => 0
                    [PASSWORD_UNIQUE_COUNT] => 0
                    [LOGIN_ATTEMPTS] => 0
                    [BLOCK_LOGIN_ATTEMPTS] => 0
                    [BLOCK_TIME] => 0
                )

        )

    [SESS_IP] => 3.145.85.3
    [SESS_TIME] => 1746985326
    [IS_EXPIRED] => 
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [SESS_SHOW_INCLUDE_TIME_EXEC] => 
    [fixed_session_id] => c712782dd2f888d6e0aff37ef6ff0695
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Прикладная механика и техническая физика / Journal of Applied Mechanics and Technical Physics

2013 год, номер 5

Уточненная теория нелинейного изгиба трехслойных пластин
из функционально-градиентного материала

А. Каси, К. Драйхе, М. Зиди, М. С. А. Хуари, А. Тунси
Университет г. Сиди-Бель-Аббес, Сиди-Бель-Аббес, Алжир
E-mail: tou_abdel@yahoo.com
Ключевые слова: уточненная теория пластин, нелинейный анализ, энергетический метод, трехслойная пластина, функционально-градиентный материал
Страницы: 187-198

Аннотация

Предложена уточненная теория нелинейного изгиба трехслойной пластины из функционально-градиентного материала, допускающая вариационную формулировку и не требующая введения корректирующего коэффициента для учета деформаций сдвига. Согласно этой теории деформации сдвига распределены по толщине пластины по параболическому закону и удовлетворяют условию отсутствия на лицевых поверхностях пластины касательных усилий. Для определения больших смещений трехслойной пластины из функционально-градиентного материала и распределения напряжений по ее толщине совместно используются энергетический принцип, предложенная теория, а также теории первого и третьего порядков, учитывающие деформации сдвига.