Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Поиск по журналу

Сибирский журнал вычислительной математики

2013 год, номер 3

Численно-аналитический метод исследования некоторых линейных функционально-дифференциальных уравнений

В.Б. Черепенников
Институт систем энергетики им. Л.А. Мелентьева Сибирского отделения Российской академии наук, ул. Лермонтова, 130, Иркутск, 664033
vbcher@mail.ru
Ключевые слова: функционально-дифференциальные уравнения, начальная задача, полиномиальные квазирешения, точные решения
Страницы: 275-285

Аннотация

В настоящей работе излагаются результаты исследования скалярного линейного функционально-дифференциального уравнения (ЛФДУ) запаздывающего типа x˙ (t) = a(t)x(t − 1) + b(t)x(t/q) + f(t), q>1. Основное внимание уделяется начальной задаче с начальной точкой, когда начальное условие задается в начальной точке и ищется классическое решение, подстановка которого в исходное уравнение обращает его в тождество. В качестве метода исследования применяется метод полиномиальных квазирешений, который основан на представлении неизвестной функции x(t) в виде полинома степени N. При подстановке этой функции в исходное уравнение возникает невязка Delta(t)=O(t^{N}), для которой получено точное аналитическое представление. Тогда под полиномиальным квазирешением понимается точное решение в виде полинома степени N возмущенной на невязку исходной начальной задачи. Доказаны теоремы существования у рассматриваемого ЛФДУ полиномиальных квазирешений и точных полиномиальных решений. Приведены результаты численного эксперимента.