Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 52.15.92.58
    [SESS_TIME] => 1736935430
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => fd091ec40542f4648ae30da51d693524
    [UNIQUE_KEY] => 63a4cfc63e9efe9527a1c9945d88a9e5
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2013 год, номер 3

Вариационные методы построения монотонных аппроксимаций для моделей химии атмосферы

В.В. Пененко, Е.А. Цветова
Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090
penenko@sscc.ru
Ключевые слова: вариационный принцип, жесткие системы ОДУ, интегрирующие множители, дискретно-аналитические аппроксимации, химия атмосферы, алгоритмы исследования чувствительности моделей
Страницы: 243-256

Аннотация

Представлен новый метод построения экономичных монотонных численных схем для решения основных, сопряженных и обратных задач атмосферной химии. Он является синтезом применения вариационного принципа в сочетании с методами декомпозиции, расщепления и конструктивной реализации идеи интегрирующих множителей Эйлера (ИМЭ) с помощью аппарата локальных сопряженных задач. Для обеспечения эффективности вычислений предложен также способ декомпозиции операторов трансформации многокомпонентных субстанций по механизмам реакций. С применением аналитических ИМЭ декомпозированные системы жестких ОДУ приводятся к эквивалентным системам интегральных уравнений, для решения которых построены прямые многостадийные алгоритмы заданного порядка точности. Разработан оригинальный вариационный метод построения взаимно согласованных алгоритмов для прямых и сопряженных задач и методов теории чувствительности функционалов для сложных дискретно-аналитических моделей с ограничениями.