Supplementary Material for:

PALEOMAGNETISM OF THE VOROGOVKA GROUP (YENISEI RIDGE): TOWARDS THE SUBSTANTIATION OF THE VENDIAN GEOMAGNETIC PHENOMENON

E.V. Vinogradov^{1,2}, D.V. Metelkin^{1,2}, E.F. Letnikova³, L.R. Kosareva⁴, V.V. Abashev^{2,1}, I.A. Vishnevskaya⁵

¹Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090, Russia

²Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

³V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

⁴Institute of Geology and Oil and Gas Technologies Kazan Federal University, Kremlevskaya st. 4/5, 420008, Kazan, Russia

⁵Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygina st., 119334, Moscow, Russia

e-mail: e.vinogradov@g.nsu.ru

This file contains:

Table S1. Paleomagnetic directions and coordinates of the corresponding virtual geomagnetic poles in the studied rocks for the VSC component.

Table S2. Selected Vendian–Early Cambrian paleomagnetic poles from the Siberian platform and its framing structures.

Table S3. Chemical composition of magnetic particles from limestones of the Severnaya Rechka Formation.

Table S4. Chemical composition of magnetic particles from limestones of the Mutnina Formation.

Table S5. Chemical composition of magnetic particles from limestones of the Sukhaya Rechka Formation.

Figure S1. The fold test results illustrated by stereoplots in situ and tilt corrected correspondingly and tectonic correction graph for VSC component. «Modern field» is the direction of the modern geomagnetic field at the sampling site according to IGRF 13-th model [Alken et al., 2021].

Figure S2. SEM images of magnetic particles from limestones of the Severnaya Rechka Formation and areas of compositional study (see Table S3).

Figure S3. SEM images of magnetic particles from limestones of the Mutnina Formation and areas of compositional study (see Table S4).

Figure S4. SEM images of magnetic particles from limestones of the Sukhaya Rechka Formation and areas of compositional study (see Table S5).

Sampla cita real	S _{lat} (N)	$S_{long}(E)$	n(C)/N	In situ		Tilt corr	ected	V	01	Dist	Dlong	A
Sample site, lock	Slat(IN)	Slong (E)	II(3)/IN	D (°)	I (°)	D (°)	I (°)	— К	0.95	Flat	Piolig	A95
Severnaya Rechka Forn	nation											
14ek08, sandstone	60.958	89.911	10/10	122.1	78.7	144.3	55	25.3	9.8			
14ek09, sandstone	60.958	89.911	8/11	159.3	80.4	163.3	55.5	31.6	10			
14ek10, sandstone	60.954	89.917	11/11	21.4	77.4	124.9	53.3	32	8.2			
14ek11, sandstone	60.954	89.917	10/10	344.7	84.8	3.1	-14.9	38.3	7.9			
14ek12, sandstone	60.954	89.917	14/15	36.7	79.1	17.3	48	20	9.1			
14ek13, limestone	60.900	89.941	10/12	214.8	65.1	202.7	41.5	27.4	9.4			
14ek14, limestone	60.902	89.942	11/11	121.2	83.6	168.9	66.3	21	10.2			
Mutnina Formation												
14ek07, sandstone	60.862	89.927	9/10	311.3	82.1	222.1	38.9	27.5	10			
14ek15, sandstone	60.896	89.921	10/11	155.6	81.1	199.4	64.7	47.2	7.1			
14ek16, sandstone	60.893	89.919	8/10	223.7	66.5	225.5	46.5	63.6	7			
14ek17, sandstone	60.898	89.925	12/13	242.8	81.9	206.9	53.9	21.8	9.5			
14ek19, limestone	60.877	89.928	10/11	182.1	79.9	176.2	70	51.4	6.8			
14ek20, sandstone	60.877	89.928	11/11	182.6	57.9	180.6	48	27.3	8.9			
14ek21, sandstone	60.868	89.921	9/11	72	68.1	17.8	52.6	52.1	7.2			
14ek27, sandstone	60.808	89.931	7/10	249.7	46	244.6	22.1	19.3	14.1			
Sukhaya Rechka Forma	ation											
14ek05, limestone	60.846	89.928	8/10	260.8	64.2	268.3	22.7	29.9	10.3			
14ek06, limestone	60.847	89.928	8/10	272.9	66.5	278.1	21.7	82.1	6.2			
14ek22, sandstone	60.811	89.873	10/10	272.1	84.7	252.1	20.1	56.2	6.5			
14ek23, sandstone	60.811	89.873	9/10	358.9	79.2	266.9	27.1	40.4	8.2			
14ek24, sandstone	60.811	89.873	9/10	195.4	77	238.6	22	19.7	11.9			
MEAN for VSC	C (60.0° 80.0) °)	(20)	224.4	83.5	-	-	20.6	7.4	50.8	75.7	A95=14.4
MEAN for VSC (60.9° 89.9°)			(20)	-	-	231.3	60.5	3.3	21.5	-	-	-
modern field (2014) in the wor	k area		8.3	78.8				Mod	el Used: IGR	F2020 [Alker	n et al., 2021]

Table S1. Paleomagnetic directions and coordinates of the corresponding virtual geomagnetic poles in the studied rocks for the VSC component.

Note: n(S)/N – number of individual vectors (sampling sites) used in statistics to the total number of studied samples; D – declination; I – inclination; K, α_{95} – Fisher statistic parameters: precision and 95% confidence circle radius; Plat, Plong – latitude (N degrees) and longitude (E degrees) of the mean paleomagnetic pole, A₉₅ – radius of the 95% confidence ellipse for the pole.

Figure S1. The fold test results illustrated by stereoplots in situ and tilt corrected correspondingly and tectonic correction graph for VSC component. «Modern field» is the direction of the modern geomagnetic field at the sampling site according to IGRF 13-th model [Alken et al., 2021].

N₂	Formation	Place	Age	Slat	Slong	N/n	Dec	Inc	a 95	Plat	Plong	A95 (dp/dm)	Authors, year
1	Sukharikha Formation	Sukharikha River, Igarka	540–530	67	87	-	272	36	10	-19	170	(7/12)	Goncharov in [Khramov,
	Old Result	Uplift											Sholpo, 1967]
2	Kostinskaya Formation	Nizhnyaya Tunguska	530–520	66	89	-	281	-47	6	21	157	(5/8)	Goncharov in [Khramov,
	Old Result	River, Turukhansk Uplift											Sholpo, 1967]
3	Chara Formation	Olekma River	530–520	60.5	134	-	299	18	8	-25	206	(3/6)	Osipova in [Khramov,
	Old Result												Sholpo, 1967]
4	Podkrasnotsvetnaya Formation	Lena River	525–513	60.5	120.5	17/34	345	-58	8	10	133	(8.7/11.8)	Osipova, 1971
	Old Result												
5	Charsk Formation	Olyokma River	525–513	60.5	121	11/22	135	-59	11	-54	195	(12.3/16.4)	Osipova, 1971
	Old Result												
6	Podkrasnotsvetnaya and Charsk	Lena and Olyokma rivers	525–513	60.5	120.8	28/56	153	14	13	-19	150	(6.8/13.3)	Khramov, 1984
	formations Old Result								-				
7	Ust-Tagul Formation	Tagul and Biryusa rivers,	600–542	55.5	97.5	/87	330	32	3	-44	140	(1.9/3.4)	Davydov, Kravchinsky,
	Old Result	Biryusa Uplift							-				1971
8	Pestrotsvet Formation	Maya and Yudoma rivers,	545-525	59.5	135	2/19	328	39	8	-46	181	(5.7/9.5)	Osipova, 1975
	Old Result	Aldan	1 400 00			(2.2		0	-			(2.1.(5.1))	
9	Karagas Group	l'agul and llmiga rivers,	1600-700	54.5	98.5	/23	141	9	6	-22	141	(3.1/6.1)	Davydov, Kravchinsky,
10	Old Result	Biryusa Uplift		<0.5	110.5	4/20	1.47	10	0	20	150	(5.5/10.0)	1971
10	Emyaksa Formation	Olenek River	535-515	68.5	112.5	4/20	147	-40	9	-39	153	(6.5/10.8)	Osipova, 1975
1.1	Old Result		600 540	55.2	07.5	1/00	252	20	2	57	110	(2)(4)	G 1, 1000
11	Old Devel	Lagul River, Biryusa	600–542	55.3	97.5	1/66	353	39	3	-36	110	(2/4)	Gurevich, 1982
10	Old Result		600 542	565	100	0/51	205	20	7	20	176	(4/0)	Connectal 1081
12	Motskaya and Ushakovka	Revunya and Udzha rivers,	600–542	56.5	108	2/51	305	28	/	-32	1/6	(4/8)	Gurevich, 1981
12	Motokova (Nizhnovatovakova)	Chave Diver Deited region	600 542	50	110	1/46	102	20	0	16	02	(5/10)	Curavial 1082
15	Formation Old Posult	Chaya River, Baikai legion	000–342	50	110	1/40	192	-20	9	-40	92	(3/10)	Gulevicii, 1982
14	Vudoma Group Old Posult	Polovo Pivor	670 600	62	127	1/0	228	02	0	2	Q1	(5/10)	Komissorova 1082
14	Ushakovka Formation	Sarma Divor Akabaya	600 542	52	107	1/9 18/81	230	25	2	-5	52	(5/10)	Komissarova, 1982
15	Old Result	Creek	000–342	55	107	+0/04	00	-30	0	-1	55	(3/9)	1082
16	Ushakovka Formation	Lena River Badanzhinsky	600-542	54	108	4/112	136	-25	5	-36	165	(3/6)	Komissarova Pisarevsky
10	Old Result	Creek	000 542	54	100	7/112	150	23	5	50	105	(3/0)	1982
17	The composite pole of the		545-520			3/				-44	157	8	Khramov et al. 1982
17	Lower Cambrian of Siberia		0.0 020								207		1.1.1 unov et ul., 1902
18	Turkut and Khatyspyt	Khorbosuonka River.	550-530	71	124	10/10	223	-9	13	-18	79	(6.6/13.1)	Gurevich, 1986
1.0	formations Old Result	Olenek Uplift							-			(
19	Tomtor Formation	Tomtor River, Biliro-	600–545	71.5	116	8/8	349	15	9	-26	127	(4.7/9.2)	Rodionov, 1984
	Old Result	Udzha Uplift										(
20	Pestrotsvet and Perekhod	middle course of the Lena	542-525	61	126.8	-/50	58.1	3.9	6.2	-16.6	64.5	5 (3.1/6.2)	Kirschvink,J.L.,
	formations	River										. ,	Rozanov, A.Yu., 1984
21	Udzha River Sediments	Udzha River	545-518	71.5	116	/40	341	28	7	-32	137	(4.2/7.7)	Rodionov, 1986
	Old Result											· ·	
22	Ust-Yudoma Formation of the	Belaya and Maya rivers	690–545	59.5	135	2/18	159	-18	21	-40	162	(11.5/21.8)	Rodionov, 1986
	Yudoma Group												

Table S2. Selected Vendian–Early Cambrian paleomagnetic poles from the Siberian platform and its framing structures. The poles of the KHR are highlighted in green, the poles of the KRS are highlighted in pink, and the metachronic poles coinciding with the KHR are highlighted in blue.

	Old Result												
22	Dolorito diko	Udzha Divar, Bilira, Udzha	1220 568	71.5	116	1/10	22	12	5	0	81	(2.6/5.1)	Podionov 1086
23	Old Popult	Unlift	1229-308	/1.5	110	1/10	52	-12	5	-9	04	(2.0/3.1)	Koulollov, 1980
24	Old Result	United Discon Alden	E 4 E - E - D E	50	125	0/10	241	22	4	40	127	$(2 \in (4 \in \mathbb{N}))$	0.1
24	Pestrotsvet and Inikanskaya	Inican River, Aldan	545–525	59	135	2/18	341	32	4	-40	137	(2.5/4.5)	Osipova, 1986
	formations Old Result												
25	Kharayuttekh Formation	Ukhta River, Chekurovka	650–545	71	128	1/21	78	7	11	-7.2	48.2	(5.6/11.1)	Komissarova, 1989
	Old Result	anticline											
26	Lower Cambrian sediments on	lower course of the Olenek	545–518	71	122.5	12/	169	-32	7	-36	135	(4.4/7.9)	Pisarevsky, 1986
	the Olenek River Old Result	River											-
27	Erkeket Formation *	lower course of the Olenek	535-518	70.9	122.6	8/23	331.5	47.4	6.8	-44.8	158.7	(5.7/8.8)	Pisarevsky et al., 1997
		River											, , , , , , , , , ,
28	Kessyusa Formation *	lower course of the Olenek	5/13-518	70.9	122.6	4/12	324.6	39.8	12.8	-37.6	165	(9.3/15.4)	Pisarevsky et al. 1997
20	ressyusa i ormation	Divor	545-510	10.7	122.0	7/12	524.0	57.0	12.0	-37.0	105	().3/13.4)	
20	Ded as diments from the Long	Western manain of Lalve	650 590	5.4	100	122	206.2	27.7	0.2	27	169.2	7.4(5.5(10.1))	Discussion at al. 2000
29	Red sediments from the Lena	Dellast in the maximum of	030-380	54	108	-/32	290.5	-27.7	9.2	-2.7	106.2	7.4 (3.3/10.1)	Fishevsky et al., 2000
	River section	Balkal in the region of											
		Cisbaikalia											
30	Shaman Formation	Shaman Rock on the Irkut	650–545	52.08	103.83	10/40	207.3	2.3	13.8	-32	71.1	(6.9/13.8)	Kravchinsky et. al., 2001
		River											
31	Minya Formation	Chaya River outcrop from	650–545	58	110	1/12	237.7	-35.9	12.7	-33.7	37.2	(8.6/14.7)	Kravchinsky et. al., 2001
		the Baikal region											
32	Shaman Formation of the	Shaman Rock on the Irkut	650–545	52.08	103.83	6/35	313.1	-5.8	32.7	-22.3	155.8	(16.5/32.8)	Kravchinsky et. al., 2001
_	Motskava Group (metachronic)	River										(,	, , , , , , , , , , , , , , , , , , ,
33	Nokhtui Formation	Bolshov Patom River	600-542	60.2	1161	-/81	218	-16	5.2	-31	71	(2, 7/5, 3)	Konstantinov 1998
34	Padrocan and Vangud	Muya region	650 545	57	115	/20	32	0	12.2	23	80	(6.3/12.4)	Konstantinov, 1998
54	Formations	iviu ya region	050-545	57	115	-12)	52		12.5	-25	00	(0.3/12.4)	Konstantinov, 1996
35	Kholodninskava and	Upper Angere river	600 542	56.2	110.5	/38	3/1	15	6.1	28	133	(2.7/5.5)	Konstantinov 1008
55	Tukolomiya formations	Savara Baikal ragion	000-342	50.2	110.5	-750	571	-15	0.1	-20	155	(2.175.5)	Konstantinov, 1996
26	Yudama Crown and Destructoriat	Alden Bissen "Disentess"	560 520	50.02	120	0/24	50.4	01.0	10.5	20.2	60.0	(5.9/11.1)	Kananalar, 2002
30	Y udoma Group and Pestrotsvet	Aldan River, Dvortsy	560-530	58.85	129	2/34	50.4	21.2	10.5	-29.3	08.8	(5.8/11.1)	Kazansky, 2002
	Formation	section											
37	Pestrotsvet Formation	Lena River, "Bachyk"	545-525	61.17	126.33	1/14	49.2	18.6	5.7	-27.2	69.2	(3.1/5.9)	Kazansky, 2002
		section											
38	Undifferentiated limestones	Yenisei River, "Plakhino"	560–530	67.83	86.5	2/14	31.1	23.6	27	-33.1	61	(15.3/28.8)	Kazansky, 2002
		section											
39	Erkeket Formation *	Khorbusuonka River,	535–518	70.9	122.6	2/35	171.6	-54.6	5	-53.3	135	6 (5/7.1)	Gallet et al., 2003
		Olenek Uplift											
40	Kharayuttekh and Tyuserian	Lena River, Chekurovka	580-530	71.1	127.4	/2.5	333.4	56.6	5.9	-53.4	164.1	7.3 (6.2/8.5)	Payloy et al., 2004
	formations	anticline		/				0.010			10.111		- u · · · · · · · · · · · · · · · · · ·
41	Kharavuttekh and Tyuserian	Lena River, Chekurovka	580-530	71.1	127.4	/19	23.6	-4.1	12.1	-15.2	102.9	(6.1/12.1)	Paylov et al 2004
71	formations	anticline	500-550	/ 1.1	127.7	1)	25.0	- - .1	12.1	-13.2	102.7	(0.1/12.1)	1 aviov et al., 2004
42	Turbut Formation *	Zharbuanarla Diver	550 520	71.4	122.0	/10	2276	55 1	6.6	50.5	160.9	70(64/90)	Paulau at al. 2004
42	rurkut Formation *	Charles Handler,	530-530	/1.4	123.9	12	337.6	55.4	0.0	-52.5	160.8	7.9 (6.4/8.9)	Paviov et al., 2004
10		Dienek Uplift	600 510	57.0	04.5	1 /1 7	50.6	26.6	0.6	20.2	24.2		
43	Alyoshin Formation	Taseeva River	600–540	57.8	94.5	1/17	58.6	26.6	9.6	-28.3	24.3	/./ (5.6/10.4)	Shatsillo et al., 2006a
44	Moshakovka and Chistyakovka	Angara River	600–540	58.2	95	9/42	16.6	5.2	8.6	-32.9	75.1	6.1 (4.3/8.6)	Shatsillo et al., 2006a
	formations												
45	Redkolesnaya Formation	Angara and Irkineeva	560-530	58.2	95	8/60	15.3	50	4.6	-60.8	68.1	5.1 (4.1/6.1)	Shatsillo et al., 2006a
		rivers											

46	Moshakovka, Chistyakovka and Ostrovnaya formations	Angara River	600-530	58.2	95	8/65	324.7	45	8.6	-48	149.1	3.6 (6.9/10.9)	Shatsillo et al., 2006a
47	Kurtun Formation	Southern Baikal region	540–530	52.7	105.8	/63	352.5	42.7	5.1	-61.5	120.2	5 (3.9/6.3)	Shatsillo et al., 2005
48	Kurtun Formation	Southern Baikal region	540–530	52.7	105.8	/15	224.9	0.2	17	-25.3	54.5	12 (8.5/17)	Shatsillo et al., 2005
49	Aisa Formation	Biryusa River and Tagul River, Biryusa Uplift	550–540	55.5	97.75	4/43	17.3	14.4	16.5	-39.9	79.1	12.1 (8.7/16.9)	Shatsillo et al., 2006a
50	Ust-Tagul Formation	Tagul and Biryusa rivers, Biryusa Uplift	540–530	55.9	97.7	/21	358.9	43.9	7	-57.5	96.8	6.9 (5.5/8.8)	Shatsillo et al., 2006a
51	Aisa and Ust-Tagul formations	Biryusa River and Tagul River, Biryusa Uplift	550-530	55.5	97.75	8/112	342.8	39	3.5	-54.3	125.8	3.2 (2.5/4.2)	Shatsillo et al., 2006a
52	Ushakovka Formation	Southern Baikal region	550–540	52.7	105.8	1/29	347.2	37.7	5	-56.9	128.1	4.5 (3.5/5.9)	Shatsillo et al., 2005
53	Ushakovka Formation	Southern Baikal region	550–540	52.7	105.8	1/16	218	-8.4	14.8	-32.3	59.2	10.6 (7.5/14.9)	Shatsillo et al., 2005
54	Uluntui Formation	Central Baikal region, Elokhin Cape	590–530	54.5	108.5	/46	44	8.2	8.8	-21	60.6	6.3 (4.5/8.9)	Shatsillo et al., 2006b
55	Ust-Angarsk complex	Angara River, Yenisei Ridge	626	58.03	93.3	6/46	75.9	18.8	5.2	-15.7	10.7	4.7 (2.8/5.4)	Metelkin, 2012
56	Ust-Angarsk complex (metachronic)	Angara River, Yenisei Ridge	626	58.03	93.3	8/71	319.4	33.1	10.5	-40.2	147.3	9 (6.8/11.9)	Metelkin, 2012
57	Karagas Group (metachronic)	Uda and Biryusa rivers, Biryusa Uplift	800–700	55	97.9	8/55	322.8	29.7	10.2	-41.2	149.4	8.4 (6.3/11.3)	Metelkin et al., 2010
58	Nersa complex (metachronic)	Biryusa Uplift	1600–740	55.01	97.94	5/42	319	28.1	11.3	-38.2	153	8.9 (6.8/12.4)	Metelkin et al., 2005
59	Usatovo Formation	Chaya River, Patom Highland	540–525	57.8	110	3/46	46.1	2.3	6.7	-22.6	58.7	1 (3.4/6.7)	Rodionov, 2014
60	Emyaksa Formation	Olenek River	535–515	68	112.2	/19	36.7	19.1	10.3	-26.5	70.7	9.8 (5.6/10.7)	Rodionov, 2014
61	Lopata Formation	Teya River, Yenisei Ridge	580–540	60.3	92.6	1/33	223.4	0.4	2.5	-20.9	45.2	1.8 (1.3/2.5)	Shatsillo et al., 2015
62	Zimoveyniy massif (Underheated/ undercleaned samples)	Yenisei River, South Yenisei Ridge	576–546	57.22	93.42	7/59	170.1	-13.6	3.9	-39	106.1	(2/4)	Kadilnikov et al., 2018
63	Nemchanka Formation	Chapa and Teya rivers, Yenisei Ridge	540–530	60.5	92	/19	209.3	-10	9.8	-30.7	57.5	7 (5/9.9)	Shatsillo et al., 2018
64	Podyom Formation	Teya River, Yenisei Ridge	540–530	60.8	92.6	/26	200	-16.1	6.4	-36.1	67.2	4.7 (3.4/6.6)	Shatsillo et al., 2018
65	Emyaksa Formation *	Bol'shaya Kuonamka River, Anabar Uplift	535–515	70.6	112.8	/47	342.3	57.6	3.9	-56.3	138.3	4.9 (4.2/5.7)	Pavlov et al., 2018
66	Pestrotsvetnaya Formation *	Maya and Belaya rivers, Uchur–Maya region	545–522	59.3	135	4/52	0.1	53.3	4.7	-64.6	134.8	5.4 (4.5/6.5)	Pavlov et al., 2018
67	Basic sills of the Chekurovka anticline	Lena River, Chekurovka anticline	540	71.2	127.7	2/17	222.1	-16.1	3.8	-21.8	82.1	2.8 (2/3.9)	Pavlov et al., 2018
68	Sardana Formation	Aldan River, Kyllakh Uplift	540–530	61.6	135.6	1/14	24	51.3	7.6	-56.5	96.8	8.5 (7/10.3)	Pavlov et al., 2018
69	Nichatka Formation	western slope of the Aldan Shield	635–580	58	118.2	38/80	255.1	-0.5	4.7	-8.1	40.6	4.4 (2.4/4.7)	Shatsillo et al., 2019
70	Emyaksa Formation *	Udzha River, Udzha and Anabar Uplifts	530–520	70.7	117.4	7/73	330.3	47.4	3.7	-44.7	155	3.9 (3.1/4.8)	Pasenko et al., 2020
71	Medvezh Formation *	Fomich River, Udzha and Anabar Uplifts	530–520	71.9	110.6	/51	327.3	56.2	4.9	-51.1	154.2	6 (5.1/7.1)	Pasenko et al., 2020

72	Dolerites of the Tas-Yuryakh volcanic complex	Khorbusuonka River, Olenek Uplift	530	71.21	123.76	9/102	317.9	75.8	7.3	-72.3	208.2	12.9 (12.4/13.4)	Metelkin et al., 2022
73	Alyoshin, Moshakovka and Chistyakovka formations of the Taseeva Group	Angara, Taseeva and Nizhnyaya Terya rivers	600–540	58.2	94.9	14/119	26.1	22	6.2	-39.2	61.1	4.8 (3.5/6.6)	Vinogradov et al., 2023
74	Moshakovka and Chistyakovka formations of the Taseeva Group	Nizhnyaya Terya and Angara rivers	600–540	58.2	94.9	13/114	312.4	32.1	5.5	-36.4	156	4.6 (3.5/6.2)	Vinogradov et al., 2023
75	Redkolesnaya Formation	Angara River, the Greben Rock location	560–530	58.19	94.96	1/13	22.3	53	5.5	-61.2	54	6.3 (5.3/7.6)	Vinogradov et al., 2023
76	Severnaya Rechka and Sukhaya Rechka formations of the Vorogovka Group	Vorogovka River in the northwestern Yenisei Ridge	580–535	60.84	89.90	6/56	215.7	-16.8	6.5	-31.6	47.4	4.7 (3.5/6.7)	This work
77	Severnaya Rechka and Mutnina formations of the Vorogovka Group (metachronic)	Vorogovka River in the northwestern Yenisei Ridge	580–535	60.9	89.9	15/118	314.8	46.4	7.7	-46.6	153.2	8.3 (6.3/9.9)	This work
78	Mutnina Formation of the Vorogovka Group	Vorogovka River in the northwestern Yenisei Ridge	580–535	60.81	89.93	3/22	299.5	0.7	11.3	-14.3	153.7	9.3 (5.7/11.3)	This work

N – number of sites in the study; n – number of samples in the study; * – In a significant number of samples, magnetic cleaning reveals trends that can be considered as an indication of the presence of a bipolar component with a "Kirschvink" direction in the rocks. This component is not isolated in its "pure form". From [Pasenko et al., 2020].

Figure S2. SEM images of magnetic particles from limestones of the Severnaya Rechka Formation and areas of compositional study (see Table S3).

Component	1	2	3	4	5	6	7	8	9	10	11	12	40	41	42	43	44	45	46	47
C, Wt. %	$\frac{4.04}{9.58}$	$\frac{3.13}{8.22}$	$\frac{7.71}{27.43}$	$\frac{7.90}{28.52}$	$\frac{3.69}{8.91}$	$\frac{3.26}{8.98}$	$\frac{5.53}{17.74}$	$\frac{13.61}{36.92}$	$\frac{5.29}{12.44}$	$\frac{3.23}{9.15}$	$\frac{7.49}{24.75}$	$\frac{7.04}{22.68}$	$\frac{9.04}{20.26}$	$\frac{4.29}{10.85}$	$\frac{2.90}{9.34}$	$\frac{9.31}{23.42}$	$\frac{4.53}{11.52}$	<u>5.31</u> 12.80	<u>9.30</u> 18.48	$\frac{4.88}{11.21}$
0	<u>31.87</u>	<u>26.09</u>	$\frac{2.51}{6.70}$	<u>6.08</u>	$\frac{31.32}{56.07}$	$\frac{21.71}{44.00}$	13.28	<u>7.45</u>	<u>28.45</u>	$\frac{20.21}{42.01}$	<u>11.15</u>	$\frac{11.73}{20.26}$	$\frac{20.20}{28.73}$	$\frac{10.05}{27.40}$	<u>12.85</u>	$\frac{19.42}{26.71}$	$\frac{26.36}{50.24}$	<u>29.39</u>	<u>38.56</u>	<u>33.72</u>
Na	56.81	51.36	6.70	16.48	56.87	$\frac{44.89}{0.15}$	31.96	15.18	$\frac{50.21}{0.19}$	43.01	27.67	28.36	48.33	52.01	$\frac{31.04}{0.25}$	36.71	50.34	53.22	57.54	58.17
Mg	$\frac{0.39}{0.45}$	$\frac{0.25}{0.33}$			$\frac{0.30}{0.36}$	$\frac{1.08}{1.47}$	$\frac{5.24}{8.30}$	$\frac{1.09}{1.46}$	$\frac{2.93}{3.40}$	$\frac{0.58}{0.81}$		$\frac{1.23}{1.96}$			$\frac{0.42}{0.57}$	$\frac{0.60}{0.75}$	$\frac{0.28}{0.35}$			$\frac{0.28}{0.32}$
Al	$\frac{0.16}{0.17}$	$\frac{0.19}{0.22}$		$\frac{0.71}{1.14}$	0100	$\frac{0.13}{0.16}$	$\frac{0.25}{0.36}$	$\frac{0.35}{0.43}$	$\frac{0.15}{0.16}$	$\frac{0.11}{0.14}$	$\frac{0.78}{1.15}$	$\frac{0.58}{0.83}$	$\frac{0.40}{0.40}$		0.90	$\frac{0.25}{0.28}$	0100		$\frac{1.05}{0.93}$	0.02
Si	$\frac{0.22}{0.22}$	$\frac{0.34}{0.39}$	$\frac{0.21}{0.32}$	$\frac{0.23}{0.35}$	$\frac{0.32}{0.33}$	$\frac{1.06}{1.25}$	<u>9.09</u> 12.46	<u>1.39</u> 1.61	$\frac{3.11}{3.13}$	$\frac{0.55}{0.67}$	$\frac{0.44}{0.62}$	$\frac{1.54}{2.13}$	$\frac{1.85}{1.78}$		$\frac{0.72}{1.00}$	$\frac{1.13}{1.22}$	$\frac{0.20}{0.22}$	$\frac{0.19}{0.20}$	$\frac{1.51}{1.29}$	$\frac{0.19}{0.18}$
Р													$\frac{0.71}{0.62}$			$\frac{0.47}{0.46}$			$\frac{1.15}{0.89}$	
S							$\frac{0.20}{0.23}$				$\frac{0.17}{0.21}$	$\frac{0.28}{0.34}$	$\frac{0.21}{0.18}$			$\frac{0.08}{0.07}$			$\frac{0.53}{0.40}$	
Cl							$\frac{0.17}{0.18}$												$\frac{0.16}{0.11}$	
К							$\frac{0.13}{0.13}$						$\frac{0.86}{0.59}$			$\frac{0.24}{0.18}$			$\frac{0.50}{0.31}$	
Ca							<u>1.70</u> 1.63				$\frac{0.33}{0.32}$	<u>0.14</u> 0.13	$\frac{0.35}{0.24}$			$\frac{0.72}{0.55}$			$\frac{2.10}{1.25}$	
V														$\frac{0.13}{0.08}$						
Cr	$\tfrac{12.35}{6.77}$	<u>0.21</u> 0.13	$\frac{0.31}{0.25}$	$\frac{0.38}{0.32}$	$\frac{1.01}{0.56}$	$\frac{0.45}{0.28}$		<u>0.19</u> 0.12	$\frac{4.70}{2.55}$	<u>6.76</u> 4.42				0100	<u>0.99</u> 0.74	<u>0.79</u> 0.46	<u>0.50</u> 0.29			
Mn	$\frac{0.53}{0.27}$									$\frac{0.56}{0.35}$									$\frac{0.34}{0.15}$	
Fe	$\frac{49.57}{25.31}$	<u>69.78</u> 39.36	<u>7.82</u> 5.99	<u>56.88</u> 44.18	<u>63.36</u> 32.96	$\frac{72.16}{42.75}$	<u>23.10</u> 15.93	<u>75.92</u> 44.29	<u>54.46</u> 27.53	<u>67.99</u> 41.44	<u>53.99</u> 38.38	<u>54.06</u> 37.44	<u>55.09</u> 26.55	<u>68.18</u> 37.07	<u>81.72</u> 56.56	<u>63.96</u> 34.62	$\frac{68.14}{37.28}$	<u>65.11</u> 33.78	<u>38.86</u> 16.61	<u>60.93</u> 30.11
Ni	<u>0.39</u> 0.19		<u>81.45</u> 59.31						$\frac{0.72}{0.35}$											
Co			$\frac{0.63}{0.47}$																	
Cu			$\frac{0.62}{0.42}$																	
Zn	$\frac{0.49}{0.22}$		$\frac{0.27}{0.18}$				<u>0.94</u> 0.55						$\frac{1.30}{0.53}$			$\frac{0.91}{0.42}$			<u>3.60</u> 1.31	
As													$\frac{1.45}{0.52}$			$\frac{2.10}{0.85}$			$\frac{2.35}{0.75}$	
Zr			$\frac{1.17}{0.56}$																	
Pr			$\frac{3.91}{1.20}$				$\frac{5.83}{1.59}$				$\frac{3.99}{1.12}$	$\frac{3.38}{0.93}$								
Nd			<u>13.12</u> 3.95				<u>21.49</u> 5.74				<u>13.62</u> 3.75	<u>12.53</u> 3.36								
Gd			$\frac{8.12}{2.24}$				$\frac{13.06}{3.20}$				$\frac{8.06}{2.03}$	$\frac{7.47}{1.84}$								
Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Table S3. Chemical composition of magnetic particles from limestones of the Severnaya Rechka Formation.

Figure S3. SEM images of magnetic particles from limestones of the Mutnina Formation and areas of compositional study (see Table S4).

Component	27	28	29	30	31	32	33	34	35	36	37	38	39
C, Wt. % / Atom. %	$\frac{18.23}{40.93}$	<u>3.36</u> 9.22	<u>3.31</u> 13.25	<u>3.11</u> 8.21	<u>5.67</u> 16.54	<u>2.62</u> 10.54	<u>3.45</u> 8.54	<u>3.54</u> 13.76	<u>7.81</u> 21.57	<u>3.19</u> 12.56	<u>4.79</u> 10.79	<u>4.77</u> 11.10	<u>4.75</u> 11.46
0	$\frac{16.20}{27.30}$	<u>22.96</u> 47.24	<u>1.36</u> 4.08	<u>26.04</u> 51.58	<u>15.36</u> 33.65	<u>1.90</u> 5.76	<u>29.83</u> 55.50	<u>2.16</u> 6.32	<u>4.06</u> 8.42	<u>2.18</u> 6.43	<u>34.86</u> 58.99	<u>33.04</u> 57.64	<u>30.19</u> 54.73
Na			<u>0.09</u> 0.19										
Mg			$\frac{0.14}{0.28}$			<u>0.32</u> 0.64	$\frac{0.23}{0.29}$				<u>0.96</u> 1.07		
Al						$\frac{0.14}{0.25}$	$\frac{0.16}{0.18}$				<u>0.26</u> 0.26		
Si	$\frac{0.20}{0.19}$	<u>0.12</u> 0.15	<u>0.41</u> 0.69		<u>0.15</u> 0.18	<u>0.33</u> 0.57	<u>0.21</u> 0.23	<u>0.45</u> 0.75	<u>0.14</u> 0.16	<u>0.32</u> 0.53	<u>0.08</u> 0.08	<u>0.32</u> 0.32	
S						$\frac{0.13}{0.20}$			<u>39.82</u> 41.21				
Κ						<u>0.15</u> 0.19							
Ca						<u>0.27</u> 0.32							
V	<u>0.20</u> 0.11										<u>0.22</u> 0.12		
Cr	$\frac{0.24}{0.13}$	$\frac{0.45}{0.28}$	$\frac{0.42}{0.38}$	$\frac{0.27}{0.17}$	<u>3.98</u> 2.68	<u>0.58</u> 0.54	$\frac{1.02}{0.58}$	$\frac{17.04}{15.30}$	$\frac{0.18}{0.12}$	<u>15.18</u> 13.81	<u>4.95</u> 2.58	<u>0.56</u> 0.30	<u>0.64</u> 0.36
Mn								<u>1.39</u> 1.18	<u>1.38</u> 0.83	$\frac{1.21}{1.04}$			
Fe	<u>64.92</u> 31.34	<u>73.11</u> 43.11	<u>93.80</u> 80.76	$\frac{70.57}{40.05}$	<u>74.53</u> 46.77	<u>93.20</u> 80.73	<u>65.09</u> 34.69	<u>67.55</u> 56.47	<u>46.61</u> 27.69	<u>70.20</u> 59.44	<u>53.56</u> 25.96	<u>61.30</u> 30.64	<u>64.42</u> 33.45
Ni					$\frac{0.31}{0.18}$			$\frac{7.40}{5.89}$		$\frac{7.21}{5.81}$	$\frac{0.32}{0.15}$		
Cu								$\frac{0.47}{0.34}$		$\frac{0.51}{0.38}$			
Zn			<u>0.48</u> 0.35			<u>0.36</u> 0.27							
Total	100	100	100	100	100	100	100	100	100	100	100	100	100

Table S4. Chemical composition of magnetic particles from limestones of the Mutnina Formation.

Component	13	14	15	16	17	18	19	20	21	22	23	24	25
C, Wt. % / Atom. %	<u>4.92</u> 20.57	<u>2.10</u> 8.54	<u>5.03</u> 17.46	<u>3.52</u> 8.45	<u>2.93</u> 7.69	<u>3.72</u> 10.60	<u>6.95</u> 16.19	<u>4.55</u> 18.12	<u>2.87</u> 11.30	<u>9.19</u> 31.83	<u>2.77</u> 8.11	<u>2.28</u> 11.84	<u>2.74</u> 9.84
0	<u>3.35</u> 10.50	<u>2.68</u> 8.17	<u>5.18</u> 13.49	<u>31.76</u> 57.27	<u>26.67</u> 52.55	<u>18.46</u> 39.53	<u>29.75</u> 52.04	<u>0.21</u> 0.35	<u>2.92</u> 8.65	<u>1.55</u> 4.04	<u>19.31</u> 42.51	<u>4.17</u> 16.26	<u>7.66</u> 20.67
Mg				<u>0.56</u> 0.66		$\frac{1.00}{1.40}$							$\frac{0.10}{0.18}$
Al			<u>0.20</u> 0.31	$\frac{0.14}{0.15}$		<u>0.81</u> 1.03					<u>0.10</u> 0.13	<u>0.09</u> 0.20	
Si		<u>0.12</u> 0.21	<u>2.46</u> 3.66	<u>0.38</u> 0.39		<u>1.22</u> 1.49			<u>0.24</u> 0.41		<u>0.16</u> 0.20	<u>0.11</u> 0.25	<u>0.17</u> 0.25
S										<u>0.35</u> 0.46			
K						$\frac{0.17}{0.15}$							
Ca												<u>0.55</u> 0.85	
Ti						$\frac{0.11}{0.08}$							
V						<u>0.22</u> 0.15							
Cr	$\frac{0.21}{0.20}$	<u>0.30</u> 0.29	<u>0.36</u> 0.29	<u>5.55</u> 3.08	<u>0.43</u> 0.26		$\frac{1.12}{0.60}$	<u>0.19</u> 0.18	$\frac{0.27}{0.24}$	$\frac{0.18}{0.14}$	<u>2.14</u> 1.45		<u>0.66</u> 0.55
Mn		<u>1.54</u> 1.36	<u>0.57</u> 0.43					$\frac{0.71}{0.62}$	<u>0.68</u> 0.59				
Fe	<u>6.55</u> 5.88	<u>93.25</u> 81.42	<u>86.20</u> 64.36	<u>57.57</u> 29.74	<u>69.97</u> 39.50	<u>74.30</u> 45.58	<u>62.18</u> 31.16	<u>94.34</u> 80.73	<u>93.02</u> 78.81	<u>18.87</u> 14.05	<u>75.07</u> 47.33	<u>44.00</u> 49.14	<u>88.67</u> 68.51
Ni	<u>2.77</u> 2.37			$\frac{0.52}{0.26}$						<u>69.85</u> 49.48	$\frac{0.45}{0.27}$	$\frac{0.51}{0.54}$	
Cu	<u>69.99</u> 55.30												
Zn												<u>0.55</u> 0.53	
Sn	<u>12.22</u> 5.17												
Pr												$\frac{10.21}{4.52}$	
Nd												<u>27.60</u> 11.93	
Gd												<u>9.92</u> 3.94	
Total	100	100	100	100	100	100	100	100	100	100	100	100	100

Table S5. Chemical composition of magnetic particles from limestones of the Sukhaya Rechka Formation.

REFERENCES

Alken, P., Thébault, E., Beggan, C.D., Amit, H., Aubert, J., Baerenzung, J., ... & Zhou, B. (2021). International geomagnetic reference field: The thirteenth generation. Earth Planets Space 73 (49), 1–25, doi: 10.1186/s40623-020-01288-x.

Davydov, V.F., Kravchinsky, A.Y. (1971). Pole. In: Palaeomagnetic Directions and Pole Positions: Data for the USSR — Issue 1. Catalogue. Soviet Geophysical Committee, World Data Center-B [in Russian], Moscow.

Gallet, Y., Pavlov, V., Courtillot, V. (2003). Magnetic reversal frequency and Apparent Polar Path of the Siberian platform in the earliest Paleozoic, inferred from the Khorbusuonka river section (northeastern Siberia). Geophysical Journal International 154, 829–840, doi: 10.1046/j.1365-246X.2003.01996.x.

Gurevich, E.L. (1981). Palaeomagnetism of the Upper Precambrian strata of Irkutsk amphitheatre, problems of their correlation and palaeogeographic position. In: Palaeomagnetism and problems of palaeogeography [in Russian]. VNIGRI, Leningrad.

Gurevich, E.L. (1982). Pole. In: Palaeomagnetic Directions and Pole Positions: Data for the USSR — Issue 5. Catalogue. Soviet Geophysical Committee, World Data Center-B [in Russian], Moscow.

Gurevich, E.L. (1986). Pole. In: Palaeomagnetic Directions and Pole Positions: Data for the USSR — Issue 6. Catalogue. Soviet Geophysical Committee, World Data Center-B [in Russian], Moscow.

Kadilnikov, P.I., Vernikovskaya, A.E., Mikhaltsov, N.E., Vernikovsky, V.A., Matushkin, N.Y. (2018). The Paleomagnetic Pole of the Siberian Paleocontinent at the Late Ediacaran Stage of Evolution of the Active Continental Margin (South Yenisei Ridge). Doklady Earth Sciences 483, 1394–1398, doi: 10.1134/S1028334X18110089.

Kazansky, A.Y. (2002). Evolution of the structures of the western framing of the Siberian Platform according to paleomagnetic data. DSci Thesis [in Russian], OIGGM SO RAN, Novosibirsk.

Khramov, A.N., Sholpo, L.E. (1967). Palaeomagnetism. Principles, methods and geological applications of palaeomagnetology [in Russian]. Nedra, Leningrad.

Khramov, A.N. (1984). Pole. In: Palaeomagnetic Directions and Pole Positions: Data for the USSR — Summary catalogue 1. Soviet Geophysical Committee: World Data Center-B [in Russian], Moscow.

Khramov, A.N., Goncharov, G.I., Komissarova, R.A., Pisarevskii, S.A., Pogarskaya, I.A., Rzhevskii, Yu.S., Rodionov, V.P., Slautsitais, I.P. (1982). Paleomagnetology [in Russian]. Nedra, Leningrad.

Kirschvink, J.L., Rozanov, A.Yu. (1984). Magnetostratigraphy of lower Cambrian strata from the Siberian Platform: a palaeomagnetic pole and a preliminary polarity time-scale. Geological Magazine 121, 189–203, doi: 10.1017/S0016756800028259.

Komissarova R.A. (1982). Pole. In: Palaeomagnetic Directions and Pole Positions: Data for the USSR — Issue 5. Catalogue. Soviet Geophysical Committee, World Data Center-B [in Russian], Moscow.

Komissarova R.A., Pisarevsky S.A. (1982). Pole. In: Palaeomagnetic Directions and Pole Positions: Data for the USSR — Issue 5. Catalogue. Soviet Geophysical Committee, World Data Center-B [in Russian], Moscow.

Komissarova, R.A. (1989). Pole from Palaeomagnetic Directions and Pole Positions: Data for the USSR — Issue 7. Catalogue. Soviet Geophysical Committee: World Data Center-B [in Russian], Moscow.

Konstantinov, K.M. (1998). Dynamic physic-geological model of Baikal folded area with using of palaeomagnetic data. PhD Thesis [in Russian]. Irkutsk State Technical University, Irkutsk.

Kravchinsky, V.A., Konstantinov, K.M., Cogne, J.P. (2001). Palaeomagnetic study of Vendian and Early Cambrian rocks of South Siberia and Central Mongolia: was the Siberian platform assembled at this time? Precambrian Research 110, 61–92, doi: 10.1016/S0301-9268(01)00181-4.

Metelkin, D. V., Belonosov, I. V., Gladkochub, D. P., Donskaya, T. V., Mazukabzov, A. M., Stanevich, A. M. (2005). Paleomagnetic directions from Nersa intrusions of the Biryusa terrane, Siberian craton, as a reflection of tectonic events in the Neoproterozoic. Russian Geology and Geophysics 46 (4), 398–413.

Metelkin, D. V., Blagovidov, V. V., Kazansky, A. Y. (2010). The history of the Karagas Supergroup evolution in the Biryusa region: synthesis of paleomagnetic and sedimentological data. Russian Geology and Geophysics 51 (8), 868–884, doi: 10.1016/j.rgg.2010.07.005

Metelkin, D.V. (2012). Evolution of Central Asian structures and the role of shear tectonics based on paleomagnetic data. DSci Thesis [in Russian]. INGG SB RAS, Novosibirsk.

Metelkin, D.V., Vinogradov, E.V., Shcherbakova, V.V., Vernikovsky, V.A., Zakharov, S.M., Nagovitsin, K.E. (2022). Concerning paleogeographic reconstructions and the state of the geomagnetic field at the Precambrian–Paleozoic boundary: new paleomagnetic data for the Olenek Uplift (Siberian Craton). Doklady Earth Sciences 506, 710–715, doi: 10.1134/S1028334X22600414.

Osipova, E.P. (1971). Pole. In: Palaeomagnetic Directions and Pole Positions: Data for the USSR — Issue 1. Catalogue. Soviet Geophysical Committee: World Data Center-B [in Russian], Moscow.

Osipova, E.P. (1973). Pole. In: Palaeomagnetic Directions and Pole Positions: Data for the USSR — Issue 2. Catalogue. Soviet Geophysical Committee: World Data Center-B [in Russian], Moscow.

Osipova, E.P. (1975). Pole. In: Palaeomagnetic Directions and Pole Positions: Data for the USSR — Issue 3. Catalogue. Soviet Geophysical Committee: World Data Center-B [in Russian], Moscow.

Osipova, E.P. (1986). Pole. In: Palaeomagnetic Directions and Pole Positions: Data for the USSR — Issue 6. Catalogue. Soviet Geophysical Committee: World Data Center-B [in Russian], Moscow.

Pasenko, A.M.; Malyshev, S.V.; DuFrane, S.A.; Shatsillo, A.V. (2020). Paleomagnetism and provenance of the lower Cambrian sedimentary rocks of the Udzha Uplift (north of the Siberian platform). Vestnik of Saint Petersburg University. Earth Sciences 65 (3), 552–576, doi: 10.21638/spbu07.2020.308.

Pavlov, V.E., Gallet, Y., Shatsillo, A.V., Vodovozov, V.Y. (2004). Paleomagnetism of the Lower Cambrian from the lower Lena River Valley: Constraints on the apparent polar wander path from the Siberian platform and the anomalous behavior of the geomagnetic field at the beginning of the Phanerozoic. Izvestiya, Physics of the Solid Earth 40 (2), 114–133.

Pavlov, V.E., Pasenko, A.M., Shatsillo, A.V., Powerman, V.I., Shcherbakova, V.V., Malyshev, S.V. (2018). Systematics of early Cambrian paleomagnetic directions from the Northern and Eastern regions of the Siberian Platform and the problem of an anomalous geomagnetic field in the time vicinity of the Proterozoic–Phanerozoic boundary. Izvestiya, Physics of the Solid Earth 54, 782–805, doi: 10.1134/s1069351318050117.

Pisarevsky, S.A., Gurevich, E.L., Khramov, A.N. (1997). Palaeomagnetism of Lower Cambrian sediments from the Olenek River section (northern Siberia): palaeopoles and the problem of magnetic polarity in the Early Cambrian. Geophysical Journal International 130 (3), 746–756, doi: 10.1111/j.1365-246X.1997.tb01869.x.

Pisarevsky, S.A., Komissarova, R.A., Khramov, A.N. (2000). New palaeomagnetic result from Vendian red sediments in Cisbaikalia and the problem of the relationship of Siberia and Laurentia in the Vendian. Geophysical Journal International 140 (3), 598–610, doi: 10.1046/j.1365-246X.2000.t01-1-00056.x.

Pisarevsky, S.A. (1986). Paleomagnetism of Cambrian sedimentsfrom the Olenek River section, in: Khramov, A.N. (Ed.). Magnitostratigrafiya i paleomagnetizm osadochnykh i vulkanogennykh formatsii SSSR [in Russian]. VNIGRI, Leningrad.

Rodionov, V.P. (1984). Palaeomagnetism of Upper Precambrian and Lower Palaeozoic of the Udzha River region, in: Palaeomagnetic Methods for Stratigraphy [in Russian]. VNIGRI, Leningrad.

Rodionov, V.P. (1986). Pole. In: Palaeomagnetic Directions and Pole Positions: Data for the USSR — Issue 6. Catalogue. Soviet Geophysical Committee, World Data Center-B [in Russian], Moscow.

Rodionov, V.P. (2014). Paleomagnetic characteristics of the section of the Venda-Cambrian boundary (Chaya River, Northern Baikal region), in: Shcherbakov, V.P. (Ed.). Proceedings of the international schools-seminars "Problems of paleomagnetism and magnetism of rocks" [in Russian]. SOLO, St. Petersburg.

Shatsillo, A.V., Didenko, A.N., Pavlov, V.E. (2005). Two competing paleomagnetic directions in the Late Vendian: new data for the SW Region of the Siberian Platform. Russian Journal of Earth Sciences 7, ES4002, doi: 10.2205/2004ES000169.

Shatsillo, A.V., Pavlov, V.E., Didenko, A.N. (2006a). Paleomagnetism of Vendian rocks in the southwest of the Siberian Platform. Russian Journal of Earth Sciences 8, ES3006, doi: 10.2205/2005ES000182.

Shatsillo, A.V., Pisarevsky, S.A., Kochnev, B.B. (2006b). Results of paleomagnetic studies of the Neoproterozoic section "Elokhin Mys" (southwest of the Siberian platform), in: Paleomagnetism and magnetism of rocks; theory, practice, experiment. Proceedings of the seminar. Borok [in Russian]. GEOS, Moscow.

Shatsillo, A.V., Kuznetsov, N.B., Pavlov, V.E., Fedonkin, M.A., Priyatkina, N.S., Serov, S.G., Rudko, S.V. (2015). The first magnetostratigraphic data on the stratotype of the Lopata Formation, Northeastern Yenisei Ridge: Problems of its age and paleogeography of the Siberian Platform at the Proterozoic–Phanerozoic boundary. Doklady Earth Sciences 465, 1211–1214, doi: 10.1134/S1028334X15120065.

Shatsillo, A.V., Kuznetsov, N.B., Rudko, S.V. (2018). New paleomagnetic data on the terminal Precambrian of the Yenisei Ridge (Chingasan and Chap series of the Teisko-Chap trough): Siberian drift, true pole shift or specificity of the Neoproterozoic geomagnetic field?, in: Problems of tectonics and geodynamics of the earth's crust and mantle. Vol. 2. Proceedings of the L Tectonic Conference [in Russian]. GEOS, Moscow.

Shatsillo, A.V., Rudko, S.V., Latysheva, I.V., Rudko, D.V., Fedyukin, I.V., Malyshev, S.V. (2019). Paleomagnetic, sedimentological, and isotopic data on Neoproterozoic periglacial sediments of Siberia: a new perspective on the low-latitude glaciations problem. Izvestiya, Physics of the Solid Earth 55, 841–863, doi: 10.1134/S1069351319060065.

Vinogradov, E.V., Metelkin, D.V., Abashev, V.V., Vernikovsky, V.A., Matushkin, N.Y., Mikhaltsov, N.E. (2023). Paleomagnetism of the Taseeva Group (Yenisei Ridge): on the issue of the Geomagnetic Field Configuration at the Precambrian-Phanerozoi c Boundary. Russian Geology and Geophysics 64 (5), 542–557, doi: 10.2113/RGG20224542.