Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Journal of Applied Mechanics and Technical Physics

2021 year, number 6

Nonstationary Thermokinetic Model of Surface Laser Scanning

A. G. Knyazeva
Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, 634055, Russia
Keywords: surface laser scanning, numerical simulation, temperature field, porosity evolution, shrinkage, surface topography, thermal cycles

Abstract

This paper presents a thermophysical model of laser beam scanning of the surface of a two-layer plate, whose top layer melts and shrinks due to changes in porosity, and whose bottom layer (substrate) does not melt. The dependences of the heat capacity, thermal conductivity, and reflection coefficient on porosity are taken into account. Heat loss is due to both radiation and convection. Results are presented showing that the process is nonstationary throughout the scan. It is shown that the complex thermal cycles and inhomogeneous temperature field are directly related to inhomogeneous shrinkage, leading to the surface topography typical of selective laser melting processes.