Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Thermophysics and Aeromechanics

2020 year, number 6

Preliminary numerical study of three-temperature model investigation of hypersonic oxygen flow under rotational nonequilibrium

Y. Ghezali1, R. Haoui1, A. Chpoun2
1University of Sciences and Technology Houari Boumediene, Algiers, Algeria
2University of Evry Paris-Saclay, Evry, France
Keywords: hypersonic, nonequilibrium, shock wave, rotation, vibration, oxygen flow

Abstract

The effect of rotational nonequilibrium on the macroscopic parameters of the flow behind a normal shock wave in oxygen gas flow has been examined. The electron thermal equilibrium was taken into account where the electron temperature was equal to the vibrational temperature according to Park’s assumption. Therefore, only the effect of rotational nonequilibrium on the translational and vibrational temperature was analyzed. Rotational and vibrational relaxation time for the O2-O2 and O2-O collisions proposed recently by Andrienko and Boyd are used. Also, the O2 dissociation rates proposed by Kim and Park are used. The results obtained with the three-temperature model well reproduce the data obtained in shock tube for the shock velocity of 4.44 km/s.