Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Thermophysics and Aeromechanics

2020 year, number 3

Numerical simulation of solidification of an iron-based binary alloy modified with nanoscale particles

V.N. Popov, A.N. Cherepanov, V.G. Shchukin
Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia
Keywords: crystallization, binary alloy, nucleation, modification, nanosize high-refractory particles, numerical simulation

Abstract

A mathematical model of solidification of an iron-based binary alloy (Fe-C) modified with nanosize high-refractory particles is proposed. The processes of alloy heterogeneous nucleation on the surface of nanosize particles and those of alloy crystallization in a cylindrical mold are described. For liquidus temperature, a linear approximation of the concentration of dissolved carbon is adopted; the law of change of this temperature obeys the non-equilibrium lever rule. The volume of the solid phase formed around a nucleus during the crystallization determines the characteristic size of the grain structure in the solidified alloy. Numerical simulation of melt solidification in a cylindrical crucible was carried out, and the kinetics of heterogeneous nucleation and growth of the solid phase was analyzed. It was found that the conditions for nucleation and crystallization differ substantially within the casting. It is shown that, as the melt undergoes cooling, volume-sequential crystallization gets established.