Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Combustion, Explosion and Shock Waves

2020 year, number 4

Radiative Fraction and Flame Length of Propane Jet Diffusion Flames in a Crossflow

J.-W. Wang1,2, J. Fang1, J.-F. Guan2, L.-Y. Zhao1, S.-B. Lin1, H. R. Shah1, Y.-M. Zhang1, J.-H. Sun1
1University of Science and Technology of China, Hefei, Anhui, 230026 China
2Tsinghua University, Hefei, Anhui, 230601 China
Keywords: поперечный поток, пропан, тепловое излучение, сажа, диффузионное пламя, crossflow, propane, radiative fraction, soot, turbulent diffusion flame

Abstract

Many industrial combustion devices rely on jet flame combustion in the crossflow to achieve mixing and reaction. Previous research offers a limited predictive capability regarding the coupling effects of the crossflow and jet flow on the flame radiative fraction. In this work, a new theoretical equation is derived to relate the radiative fraction to the fuel flow rate and the crossflow velocity. The experimental results show that the flame length increases as the crossflow velocity increases for all considered flames. The results of this work suggest that the stretching factor is 0.08 s. The radiative fraction is almost independent of the nozzle diameter in the case of a low crossflow velocity. The crossflow has the strongest effect on the radiative fraction for a smaller nozzle diameter. This is because of the effect of the crossflow and jet flow velocities on the soot residence time, which is proportional to the radiative fraction.