Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Journal of Applied Mechanics and Technical Physics

2020 year, number 2

Numerical and Experimental Simulation of Magnetic-Hydrodynamic Interaction in a Hypersonic flow of a Blunt Solid

T. A. Korotaeva1,2, V. P. Fomichev1,2, M. A. Yadrenkin1
1Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
2Novosibirsk State Technical University, Novosibirsk, 630073, Russia
Keywords: магнитогидродинамическое взаимодействие, гиперзвуковой поток воздуха, затупленное тело, электрический разряд, магнитное поле, magnetic-hydrodynamic interaction, hypersonic airflow, blunt solid, electric charge, magnetic field

Abstract

This paper describes results of an experimental and numerical study of a magnetic-hydrodynamic (MHD) method for controlling a hypersonic ( M = 6) airflow in which a launched device of typical configuration is located. The experiments are carried out using an MHD testbed based on a shock tube. The flow in front of the solid is ionized using an electric discharge in an external magnetic field with an induction B =0.80-1.58 T. Conditions corresponding to the experimental conditions are numerically simulated using the Reynolds-average steady Navier-Stokes equations. The MHD interaction region is simulated by isolating a zone in front of the blunt part of the model with given force and heat sources. It is shown that, as a result of strong MHD interaction, the head jump moves away from the model surface and the heat flux to the body decreases with a value of the Stuart number S =0.1-0.3.