Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Atmospheric and Oceanic Optics

2020 year, number 3

Use of the long-wave range for remote sensing of atmospheric aerosols

A.V. Klimkin1, A.A. Karapuzikov2, G.P. Kokhanenko1, A.N. Kuryak1, K.Yu. Osipov1, Yu.N. Ponomarev1, Zhang Shuo1
1V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Science, 1, Academician Zuev square, Tomsk, 634055, Russia
2Special technologies, Ltd, 630060, Novosibirsk, Russia, Zeljonaja gorka str. 1/3
Keywords: лабораторное моделирование, CO-лазер, длинноволновый лидар, дистанционное зондирование, laboratory simulation, CO laser, long-wave lidar, remote sensing

Abstract

The results of laboratory experiments on recording the backscattered IR laser radiation from aerosol particles containing organic impurities are presented. The studies were performed at the laboratory test bench according to the lidar sensing scheme along a controlled optical path. Aqueous aerosol and aqueous solutions were used as model media. Aerosol and solutions contained organic impurities: tryptophan, isopropyl alcohol, glycerin, and nicotinamide adenine dinucleotide (NADH). For research in the IR range, the experimental complex was modified. The UV laser was replaced with an IR laser during this upgrade. A liquid-nitrogen-cooled mercury-cadmium-telluride based IR detector was used to record backscatter signals. A possibility of using IR lasers with scanning the radiation frequency for remote sensing of atmospheric organic aerosols is shown.