Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Thermophysics and Aeromechanics

2019 year, number 3

Investigation of a stable boundary layer using an explicit algebraic model of tur-bulence

A.F. Kurbatskii1, L.I. Kurbatskaya2
1Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia
2Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia
Keywords: турбулентность, устойчивый планетарный пограничный слой, явная алгебраическая модель турбулентных потоков, постоянный форсинг поверхности, численное моделирование, turbulence, stable planetary boundary layer, explicit algebraic model of turbulent fluxe, constant surface forcing, numerical simulation

Abstract

Using the recently developed explicit anisotropic algebraic Reynolds-stress model, calculations were performed to study the stable boundary layer dynamics according to the well-known test case of the GABLS1 (Global Energy and Water Cycle Experi-ment Atmospheric Boundary Layer Study) project, where the Richardson number Ri > 1. The model includes the effect of gravity waves, which allows taking into account the momentum maintenance under strong stability conditions. The model shows good agreement with the results of LES simulation. The study aims at obtaining a much more realistic boundary layer, shallower in depth than in traditional first-order models. The case of a constant surface cooling rate is considered. Some interesting features of the model are related to its deduction based on physical principles. In particular, the use of a larger number of prognostic equations in the model makes it possible to obtain more realistic dynamic behavior.