Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Thermophysics and Aeromechanics

2019 year, number 2

Experimental study on the heat and mass transfer characteristics of a counter-flow wet cooling tower with foam ceramic packing

Q.J. Kong1, D.Y. Liu2, P. Wang3, D.Q. Xie4, Q. Wu4, X.Y. Zhao4
1Jiangsu University of Technology, Changzhou, Jiangsu, China
2Hohai University, Nanjing, Jiangsu, China
3Hohai University, Nanjing, China
4Hohai University, Changzhou, Jiangsu, China
Keywords: градирня, характеристики тепло- и массопереноса, пенокерамика, ороситель, отношение расходов, эффективность охлаждения, cooling tower, heat and mass transfer characteristics, foam ceramic, packing, water/air mass flow ratio, cooling performance

Abstract

An experimental investigation of coinstantaneous heat and mass transfer phenomena between water and air in a counter flow wet cooling tower filled with a new type packing named “FCP-08” is presented in this paper. The packing consisted of foamed ceramic corrugated board with sine waves and surface retention groove is 1.0 m high and have a cross sectional test area of 0.68x0.68 m2. The present investigation is focused mainly on the effect of the water/air mass flow ratio on the heat and mass transfer characteristics of the cooling tower, for different inlet water temperatures. The results show that the cooling water range R and the cooling tower efficiency e decrease with the increase of water/air mass flow ratio L/G . Meanwhile, the cooling characteristic coefficient KαV/L slightly decreases with the increase of water/air mass flow ratio and the value is obviously higher than that of other packing investigated before. The expression of cooling characteristic coefficient related to water/air mass flow ratio and inlet water temperature is obtained by linear fitting. The comparison between the obtained results and those found in the literature for other types of packing indicates that cooling performance of the tower with foam ceramic packing is better.