DYNAMIC OBJECT IDENTIFICATION USING A FAMILY OF EXPERIMENTAL SUPPORTING INTEGRAL CURVES
Yu. G. Bulychev1, A. G. Kondrashov2, P. Yu. Radu3
1JSC "All-Russian Scientific Institute 'Gradient'", 344000, Rostov-on-Don, prosp. Sokolova, 96 2JSC "Scientific Production Association 'Kvant'", 173001, Velikiy Novgorod, Bolshaya Sankt-Peterbugskaya, 73 3JSC "Kaluga Research Radio Engineering Institute", 249192, Zhukov, Kaluzhskaya oblast, Lenina, ul. Lenina, 2
Keywords: динамический объект, активная идентификация, сингулярная по- меха, семейство опорных интегральных кривых, метод множителей Лагранжа, числовые характеристики поведения динамического объекта, dynamic object, active identification, singular interference, supporting integral curves, Lagrange multiplier method, quantitative characters of the dynamic object behavior
Abstract
A specifically planned experiment based on obtaining a required family of estimates of supporting integral curves (approximately described in a given finite system of base functions) is used to solve a problem of active identification of a dynamic object, which corresponds to an a priori unknown differential equation. In view of the fact that experimental data may contain fluctuation and singular interference, a method is developed for optimal unbiased estimation of linear numerical characteristics of the object behavior and approximate analytical solution (differential equation), which is valid for a given set of permitted time values and initial condition. The basic characteristics of the method are substantiated, and the results of the computational experiment are presented
|