Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Combustion, Explosion and Shock Waves

2017 year, number 3

Synthesis, XRD and DFT Studies of a Novel Cocrystal Energetic Perchlorate Amine Salt: Methylamine Triethylenediamine Triperchlorate

P. Ma1, J.-Ch. Jiang1, Sh.-G. Zhu2
1Nanjing Tech University, Nanjing, 210009 China
2Nanjing University of Science and Technology, Nanjing, 210094 China
Keywords: сокристаллический энергетический материал, кристаллическая структура, эффективность, расчеты методом теории функционала плотности (DFT), cocrystal energetic material, crystal structure, performance, DFT calculation

Abstract

This paper reports the synthesis, experimental and theoretical studies of a novel inorganic-organic cocrystal energetic material: methylamine triethylenediamine triperchlorate (MT). MT is synthesized by a rapid “one-pot” method. The performance test of MT shows that it is more powerful and has lower sensitivity in comparison to the benchmark energetic material, i.e., 2,4,6-trinitrotoluen (TNT). The molecular and crystal structures of MT are determined by means of x-ray diffraction (XRD). The compound crystallizes in a monoclinic system (space group Pn) with cell dimensions a = 8.975(18), b = 17.836(4), and c = 10.455(2) Å. The band structure and the density of states are calculated by an abbreviated form of the CASTEP code. The first principle tight-binding method within the general gradient approximation is used to study the electronic band structure, density of states, and Fermi energy. The results indicate that the main mechanism of cocrystallization originates from the Cl-OH hydrogen bonding between - ClO4 and -NH2.