Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Combustion, Explosion and Shock Waves

2017 year, number 2

Modeling of Ignition of Organic Explosives by a Laser Pulse in the Weak Absorption Range

V. A. Dolgachev1, E. V. Duginov2, A. V. Khaneft1,3
1Kemerovo State University, Kemerovo, 650043 Russia
2Kemerovo State Agricultural Institute, Kemerovo, 650056 Russia
3Tomsk Polytechnical University, Tomsk, 634050 Russia
Keywords: моделирование, тепловое инициирование, лазерный импульс, плавление, критерий зажигания, тэн, октоген, гексоген, TATБ, simulation, thermal initiation, laser pulse, melting, ignition criterion, PETN, HMX, RDX, TATB

Abstract

Ignition of RDX, HMX, and TATB by a nanosecond laser pulse is numerically simulated. The heat conduction equation in a cylindrical coordinate system is solved with allowance for multiple reflections of the light beam, zeroth-order exothermic reaction, and melting. Despite a small temperature gradient caused by a small coefficient of radiation absorption, violation of thermal equilibrium due to the Arrhenius nonlinearity leads to ignition of energetic materials from the surface. The critical energy density of PETN, RDX, HMX, and TATB ignition by a nanosecond laser pulse is determined. For identical absorption and reflection coefficients, the calculations show that the most sensitive explosive is PETN, whereas the most heat-resistance explosive is TATB.